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ABSTRACT

We develop an iterative algorithm based on minorization - maxi-

mization optimization to determine the maximum a posteriori esti-

mate of the signal. We focus on linear Gaussian signal model with

a family of heavy-tailed prior distributions which can be repre-

sented as scale mixture of Gaussian. We then modify the proposed

algorithm for wavelet domain image denoising. Experimental re-

sults show that using complex wavelet representations, the perfor-

mance of the proposed algorithm is very competitive with that of

the state-of-the-art algorithms.

1. INTRODUCTION

Estimating signal from noisy observations is a fundamental task in

signal processing. A linear observation model is given by

y = Ax + e (1)

where x is a column vector of the true signal, y and e are vectors

of observations and noise, respectively and A is a known matrix.

When we assume the model for noise is i.i.d. Gaussian, the max-

imum a posteriori (MAP) estimation problem is essentially a pe-

nalized least squares problem. For example, the problem is known

as a ridge regression or weight decay [1] problem when the prior

for x is also i.i.d. Gaussian. When the prior for x is non-Gaussian,

it is usually chosen to model the sparseness of the signal [2], to

control the complexity of the model [1], or to perform model se-

lection [3, 4]. A typical application that exploits the sparseness of

the signal is in wavelet based image denoising [2, 5]. In this case,

A = I is the identity matrix and x is the wavelet coefficient vector

of the signal.

Among the non-Gaussian priors, a particular family of heavy-

tailed distributions, that has been widely used in statistics research

and has been recently used in signal processing, is the scale mix-

ture of Gaussian distribution [6]. These distribution functions, in-

cluding generalized Gaussian, student-t and slash distributions [7],

have found many successful applications in signal and image pro-

cessing [2,8,9]. The EM algorithm has been a major computational

tool [10].

Recently, the minorization-maximization (MM) algorithm [11]

has been studied for many statistical problems including variable

selection [12] and quantile regression [11]. The basic idea is that,

instead of directly maximizing the cost function, another cost func-

tion that minorizes1 the original cost function is iteratively maxi-

mized.

1The formal definition is presented in Section 2.1.

In this paper, we develop MM algorithms for MAP signal es-

timation problem stated in (1). More specifically, we assume that

noise is modelled i.i.d. Gaussian with zero mean and known vari-

ance and that the prior is the scale mixture of Gaussian given by

p(x|σ2, ν) =

∫ ∞

0

N (x|σ2, u)p(u|ν)du (2)

where N (x|σ2, u) =
√

u√
2πσ

e
− u

2σ2 x2
and p(u|ν) is the prior dis-

tribution of u (0 ≤ u < ∞). Different settings for p(u|ν) result

in a family of heavy-tailed distributions [6, 9, 13]. Table 1 shows

the definitions for three distribution functions which can be rep-

resented as scale mixture of Gaussian (SMG). Here, we have in-

cluded two parameters σ2 and ν to account for certain distributions

such as the student-t distribution which has a scaling parameter and

a parameter for the degree-of-freedom. We further assume that ν
is known and σ is to be estimated. With these model assumptions,

the problem is essentially a penalized least squares problem which

does not have a close form solution. A key step in developing

the MM algorithm is to determine the minorizing function for the

objective function to be optimized. We show that the logarithm

of the SMG distribution function is convex. As such, minorizing

function can be determined based on the convexity.

As an application, we modify the proposed algorithms for im-

age denoising in the wavelet domain. We study two heavy-tailed

priors for wavelet coefficients: student-t and slash distributions

which are of interest as they have not yet been widely studied in

image denoising. Experimental results show that using overcom-

plete wavelet representations, the performance of the proposed al-

gorithm is competitive to that of the state-of-the-art image denois-

ing algorithms.

2. MINORIZATION-MAXIMIZATION ALGORITHM

2.1. A brief review of the MM algorithm

We first give a brief review of the MM algorithm. Let f(t) be a

real-valued function and g(t; t(k)) be another real-valued function

with a known parameter t(k). The function g(t; t(k)) is said to

minorize f(t) at the point t(k) provided

g(t; t(k)) ≤ f(t) for all t

g(t(k); t(k)) = f(t(k)) (3)
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Generalized Gaussian
1

2Γ(1 + 1/ν)σ
exp

[
−

(
x2/σ2

)ν/2
]

, 0 < ν ≤ 2

Student-t
Γ((ν + 1)/2)

Γ(ν/2)
√

νπσ

(
1 + x2/νσ2

)−(ν+1)/2

Slash
ν√
2πσ

(
x2/2σ2

)−(ν+1/2)
Γ(ν + 1/2, x2/2σ2)

Table 1. Three heavy-tail distributions, where Γ(a) =

∫ ∞

0

ta−1e−tdt and Γ(a, b) =

∫ b

0

ta−1e−tdt are the gamma function and incom-

plete gamma function, respectively. We assume ν is a fixed parameter.

Let t(k) represent the last iteration in a search for the maximum of

f(t) and denote t(k+1) as the maximizer of g(t; t(k)), such that

t(k+1) = max
t

g(t; t(k)). (4)

From the definition, we have

g(t(k+1); t(k)) ≥ g(t(k); t(k)) = f(t(k))

and

f(t(k+1)) ≥ g(t(k+1); t(k)).

Therefore, maximizing g(t; t(k)) results in a non-decreasing se-

quence of f(t):

f(t(k+1)) ≥ f(t(k)) (5)

Instead of directly maximizing f(t), we can iteratively maximize

the minorizing function g(t; t(k)). The algorithm is thus called a

minorization-maximization (MM) algorithm.

Now let’s consider a function F (x) = f [q(x)]. We assume

that f(t) is convex and differentiable [14], such that

f(t) ≥ f(t(k)) + f
′
(t(k))(t − t(k)) (6)

Substituting t = q(x) into (6), we have the minorizing function

for F (x)

F (x) ≥ D(x, x(k)) (7)

where

D(x; x(k)) = f
′
[q(x(k))]q(x) + constant (8)

Therefore, the MM algorithm that iteratively maximizes D(x; x(k))

x(k+1) = max
x

D(x; x(k)) (9)

leads to a non-decreasing sequence F (x(k+1)) ≥ F (x(k)).

2.2. The minorizing function for the log-SMG function

We study the logarithm of the scale-mixture of Gaussian (log-

SMG) distribution function

log
∫ ∞
0

N (x|σ2, u)p(u|ν)du

= − 1
2

log(2π) − 1
2

log s + log
∫ ∞
0

√
up(u|ν) exp[−ux2/2s]du

(10)

where s = σ2. Let us define a function F (x) as

F (x) = log

∫ ∞

0

√
up(u|ν) exp[−ux2/(2s)]du (11)

Changing the variable t = q(x) = x2/2s, we have a new function

f(t)

f(t) = log

∫ ∞

0

√
up(u|ν) exp[−ut]du. (12)

The function f(t) and its first derivative for the three distributions

are listed in Table 2.

Since
√

up(u|ν) is non-negative for any u (0 ≤ u < ∞)

and f(t) is the mixture of the convex function exp[−ut], therefore

f(t) is convex [15]. We can also verify the convexity by recog-

nizing that
∫ ∞
0

√
up(u|ν) exp[−ut]du is the Laplace transform

of
√

up(u|ν). The result is log-convex [14]. Therefore, F (x) is

minorized by

F (x) ≥ f
′
[q(x(k))]

x2

2s
+ constant (13)

It is easy to prove that

D(x) +

N∑
n=1

F (xn) ≥ D(x) + f
′
[q(x(k)

n )]
x2

n

2s
(14)

where D(x) is a real function of the vector x = [x1, x2, ..., xN ].

2.3. An MM algorithm for penalized least squares problem

For the penalized least squares problem with known noise variance

σ2
e and unknown scaling parameter s = σ2, the log-posterior, ig-

noring constants, is given by

log p(x, s|y) = log p(y|x) + log p(x|s, ν) + log p(s) (15)

where

log p(y|x) = −N

2
log(2πσ2

e) − 1

2σ2
e
eT e (16)

and

log p(x|s, ν) = −N

2
log 2π − N

2
log s +

N∑
n=1

f(tn) (17)

The function f(t) is given by (12).

We now define a function

H(x, s;x(k), s(k))

= log p(y|x) + log p(s) − N

2
log s +

∑N

n=1
f

′
(t

(k)
n )

x2
n

2s

= − 1

2σ2
e
eT e + log p(s) − N

2
log s − 1

2s
xT W(k)x

(18)
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Generalized Gaussian Student-t Slash

f(t) −(2t)ν/2 − ν+1
2

log(ν + 2t) −(ν + 1
2
) log t + log Γ(ν + 1

2
, t)

f
′
(t) −ν(2t)

ν−2
2 − ν + 1

ν + 2t
− Γ(ν + 3

2
, t)

tΓ(ν + 1
2
, t)

Table 2. The function f(t) and its first derivative for the three heavy-tailed distributions. For generalized Gaussian, the parameter ν must

be set 0 < ν ≤ 2 such that f(t) is convex.

where W(k) = diag[−f
′
(t

(k)
n )] is a diagonal matrix.

Using (14), we can easily see that H(x, s;x(k), s(k)) is the

minorizing function for the log-posterior

log p(x, s|y) ≥ H(x, s;x(k), s(k)).

Therefore, instead of directly optimizing the log-posterior, we can

iteratively maximize H(x, s;x(k), s(k)). Since a joint optimiza-

tion for x and s is still difficult, we use the same idea of the gener-

alized EM algorithm [10] which holds one fixed and optimizes for

the other. As such, the update for x is obtained by

x(k+1) = max
x

H(x, s(k);x(k), s(k)) (19)

=

(
AT A +

σ2
e

s(k)
W(k)

)−1

AT y (20)

The update for the scaling parameter s depends on the prior. To

simplify presentation, we assume p(s) is a uniform distribution.

Its update is given by

s(k+1) = max
s

H(x(k+1), s;x(k), s(k)) (21)

=
1

N
[x(k+1)]T W(k)x(k+1)

(22)

2.4. Connection with the EM algorithm

The penalized least squares problem can also be solved by using

the EM algorithm [16]. It can be shown that the MM algorithm

presented in the previous section is equivalent to the EM algorithm

in that the two update steps are the M-steps and the E-step is given

by

u(k)
n = E

[
un|x(k)

n , s(k), y
]

= −f
′
(t(k)

n )

where t
(k)
n = (x

(k)
n )2/(2s(k)).

3. APPLICATIONS IN IMAGE DENOISING

3.1. Generalized Wiener estimate

The denoising problem is a special case of the penalized least

squares problem where A = I is an identity matrix. From (19), we

can easily derive the update for the signal and scaling parameter

x(k+1)
n =

s(k)

s(k) + u
(k)
n σ2

e

yn. (23)

and

s(k+1) =
1

N

N∑
n=1

u(k)
n

(
x(k+1)

n

)2
(24)

where we have used u
(k)
n = −f

′
(t

(k)
n ) to simplify notation.

We recall that for the observation model given by (1), when

the signal is modeled i.i.d. Gaussian with zero mean and known

variance σ2, the MAP estimate of xn is a Wiener estimate given

by

xn =
σ2

σ2 + σ2
e
yn (25)

Therefore, we regard the proposed algorithm as a generalized Wiener

estimate, because the variable un in equation (23) is a scaling fac-

tor that accounts for the heavy-tailed characteristic of the distribu-

tion, and the algorithm is an iterative algorithm.

3.2. Image denoising

Direct application of the proposed algorithm for image denoising

does not necessarily lead to satisfactory results. This is because

in developing the algorithm, we have ignored that image signals

are generally non-stationary. We modify the algorithm such that

localized information is used

Specifically, we replace the global scaling parameter s with a

localized scaling parameter sn which is given by

s(k+1)
n =

1

2M + 1

M∑
m=−M

u
(k)
n−m

[
x

(k+1)
n−m

]2

. (26)

We notice from Table 2 that u
(k)
n is a function of

[
x

(k)
n

]2

/s(k) for

the student-t and slash distribution. We replace it with z
(k)
n /s

(k)
n ,

where

z(k)
n =

1

2M + 1

M∑
m=−M

[
x

(k)
n−m

]2

. (27)

The estimate of the signal is then given by

x(k+1)
n =

s
(k)
n

s
(k)
n + u

(k)
n σ2

e

yn (28)

A robust estimation of the variance of the noise is given by

σe = median(|y|)/0.6745 (29)

3.3. Experimental results

The proposed denoising algorithm is called the iterative general-

ized Wiener estimate (IGWE) algorithm. Since the generalized

Gaussian and a number of SMG distributions have been studied [8,

9,17], we focus on the student-t and slash distributions which have
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IGWE-S IGWE-T [20] [8] [19]

Lena

σe = 10 35.30 35.33 34.96 35.61 35.34

σe = 15 33.47 33.51 33.05 33.90 33.67

σe = 20 32.13 32.18 31.72 32.66 32.40

σe = 25 31.06 31.13 30.64 31.69 31.40

σe = 30 30.18 30.25 - - 30.54

Barbara

σe = 10 33.69 33.70 33.35 34.03 33.35

σe = 15 31.52 31.54 31.10 31.86 31.31

σe = 20 29.97 29.99 29.44 30.32 29.80

σe = 25 28.78 28.80 28.23 29.13 28.61

σe = 30 27.83 27.85 - - 27.65

Table 3. A comparison of denoising results (dB) using different

algorithms. Two test images are used under different noise levels.

not been widely applied to denoising problem. We use IGWE-T

and IGWE-S to indicate the student-t and slash the distribution is

being used, respectively. Experimental results show that best re-

sults are obtained for 3 to 4 iterations for the IGWE-T (ν = 3) and

IGWE-S (ν = 15) algorithms2. In all experiments, we decom-

posed of an image into 6 levels using the sym12 wavelet. Each

subband of the signal is then denoised independently.

We test the proposed algorithm using the complex wavelet rep-

resentation [18,19]. In our experiments, we use the proposed algo-

rithms (IGWE-T and IGWE-S) to process each individual image

subband of the complex wavelet representation. We use exactly

the same complex wavelet transform as that used in [19]. Results

are shown in Table 3.

We compare results from three image denoising algorithms

which use different overcomplete wavelet representations and dif-

ferent statistical models [8, 19, 20]. We can see from Table 3 that

the performance of the proposed algorithms are comparable with

that of the three state-of-the-art algorithms.

4. CONCLUSIONS

In this paper, we have developed MM algorithms for the MAP

signal estimation for a linear Gaussian model. We study a fam-

ily of heavy-tailed prior distributions which can be expressed as

a scale mixture of Gaussian. By exploiting the log-convexity of

the scale mixture of Gaussian, we show that an iterative algorithm

can be developed. We then apply the proposed algorithm to im-

age denoising. We show that the proposed algorithm can be re-

garded as a generalization of the classical Wiener estimate algo-

rithm. We test the proposed algorithm using complex wavelet rep-

resentations. Experimental results show that the performance of

the proposed algorithm is competitive with three state-of-the-art

algorithms.
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