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ABSTRACT

In this paper, we propose a high-resolution image reconstruc-
tion algorithm to reduce the distortion in the reconstructed
high-resolution image due to the inaccuracy of motion esti-
mation. For this purpose, we analyze the noise caused by
the inaccurate motion information. Based on this analysis,
we propose a new regularization functional. The proposed al-
gorithm requires no prior information about the original im-
age or the inaccurate motion information. Experimental re-
sults indicate that the proposed algorithm outperforms con-
ventional approaches with respect to both objective and sub-
jective criteria.

1. INTRODUCTION

Recently, a high-resolution image reconstruction handling in-
accurate motion information has been researched [1]-[4]. In
[1], the methods to reduce effects of inaccurate motion infor-
mation were proposed. These methods are useful for improv-
ing the solution accuracy when errors exist not only in the
recording process but also in the measurement matrix. Rafael
et al. proposed a method based on Bayesian approach [2].
However, the error caused by the inaccurate motion informa-
tion only exists in the boundary of blur support since only
uniform blur is considered. In [4], regularization functionals
based on set theory were proposed. However, it depends on
the initial condition.

In this paper, the perturbation caused by the motion esti-
mation error is modeled as noise. To apply the noise model to
regularization, we first analyze the noise caused by the motion
estimation error. Since the noise caused by the motion estima-
tion error in each channel is different, the regularization pa-
rameter is determined adaptively for each channel. The pro-
posed regularization functional is determined automatically
without any prior knowledge.

This research was supported by the MIC (Ministry of Information and
Communication), Korea, under the ITRC (Information Technology Research
Center) support program supervised by the IITA (Institute of Information
Technology Assessment) (IITA-2005-(C1090-0502-0028))

The rest of the paper is organized as follows. In Section
2, the observation model based on the image acquisition sys-
tem is briefly presented. In Section 3, the noise caused by
the motion estimation error is analyzed. In Section 4, the reg-
ularization functional is chosen based on the analysis of the
noise caused by the motion estimation error. With the regu-
larization functional, a high-resolution image reconstruction
is performed iteratively by gradient descent method. Experi-
mental results are provided in Section 5. These include results
obtained from simulated sequences and images acquired by a
real system. Finally, some conclusions are given in Section 6.

2. PROBLEM FORMULATION

Consider the desired high-resolution image of size N(= L1N1

×L2N2) is written in lexicographical notation as the vector
x = [x1, · · · , xN ]T . Here, parameters L1 and L2 are the
downsampling factors for the horizontal and the vertical di-
rections, respectively. Thus, each observed low-resolution
image has size of M(= N1×N2). Let the number of observed
low-resolution images be p. The k-th low-resolution image
can be denoted in lexicographic notation as yk = [yk,1, · · · ,
yk,M ]T , for k = 1, · · · , p. The observed low-resolution im-
ages which are degraded by motion, blur, downsampling, and
noise are acquired from the high-resolution image x. Then,
the observation model can be written as

yk = DBkMk(sk)x + nk, for k = 1, 2, · · · , p, (1)

where the matrixes D, Bk, and Mk(sk) which represent down-
sampling, blur, and motion. The vector sk denotes the motion
parameters of the k-th observation with respect to the desired
high-resolution grid and nk is the additive zero mean Gaus-
sian noise.

3. ANALYSIS OF NOISE CAUSED BY MOTION
ESTIMATION ERROR

For simplifying expression, we consider 1-D signal instead of
2-D image to show the relationship between noise and inac-
curate motion information. Let a continuous 1-D signal de-
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fined in [0, T ] and its shifted version be s(t) and s(t − τ),
respectively. Here, t and τ represent the time and the shift
estimation error (motion estimation error in 2-D) via a origi-
nal signal, respectively. In other words, s(t) and s(t − τ) are
an original signal and a signal with the shift estimation error.
Thus, n(t, τ) = s(t) − s(t − τ) becomes the noise caused
by the shift estimation error. The mean of the noise n(t, τ) is
defined as

n(t, τ) =
1
T

∫ T

0

(
s(t) − s(t − τ)

)
dt. (2)

In order to get the solution of Eq.(2), we use the Taylor series
expansion approximately

s(t − τ) ≈ s(t) + (−τ)s′(t). (3)

From Eq. (3), Equation (2) can be rewritten as

n(t, τ) =
1
T

∫ T

0

τs′(t)dt

= τs′(t), (4)

where s′(t) is the mean value of the first differentiation of
s(t). The variance of n(t, τ) is defined as

var
(
n(t, τ)

)
=

1
T

∫ T

0

(
s(t) − s(t − τ) − n(t, τ))

)2dt

=
1
T

∫ T

0

(
τs′(t) − τs′(t)

)2dt

= τ2var
(
s′(t)

)
. (5)

We assume that the signal s(t) has various increase or de-
crease patterns. According to this assumption, the mean of
the first differentiation s′(t) is nearly to zero. Thus, Equation
(4) and Equation (5) can be rewritten as

n(t, τ) = 0, (6)

and
var

(
n(t, τ)

)
= τ2

(
s′(t)

)2
, (7)

where
(
s′(t)

)2
is the mean of square of the first differentia-

tion.

4. HIGH-RESOLUTION IMAGE
RECONSTRUCTION

The high-resolution image reconstruction is an ill-posed prob-
lem because of an insufficient number of low-resolution im-
ages, ill-conditioned blur operators, and inaccurate motion in-
formation. Constrained least squares (CLS) approach is the
simplest method to solve this problem. A minimization func-
tional of CLS in multichannel is defined as

F (α,x) =
p∑

k=1

α‖yk − Wkx‖2 + ‖Cx‖2, (8)

where α denotes the regularization parameter and C is a high-
pass operator. The choice of the regularization parameter is
important since it controls the balance between fidelity to the
data and smoothness of the solution. Each channel should be
applied to different regularization parameters considering ad-
ditive noise and the motion estimation error in each channel.
Thus, Equation (8) can be changed into

F (αk(x),x) =
p∑

k=1

αk(x)‖yk − Wkx‖2 + γ‖Cx‖2, (9)

where αk(x) and γ are the regularization functional consider-
ing the motion estimation error in each channel and the nor-
malized parameter, respectively.

4.1. Choice of Multichannel Regularization Functional

In set theoretical approaches, the regularization functional αk(x)
in each channel is proportional to ‖Cx‖2 and is inversely pro-
portional to ‖yk − Wkx‖2. That is, the regularization func-
tional αk(x) in each channel is of the form

αk(x) =
‖Cx‖2

‖yk − Wkx‖2 + δk
, (10)

where δk is a parameter preventing the denominator from be-
coming zero. Since the residual term ‖yk − Wkx‖2 de-
creases rapidly in the iteration procedure, the residual term
‖yk − Wkx‖2 becomes close to zero. This makes it diffi-
cult that the minimization functional has an optimal solution
in which every channel is considered. For example, when
one channel has no motion estimation error, the regulariza-
tion functional in the channel is close to infinite and the other
channels are not considered in the regularization. In order to
solve this problem, Lee and Kang proposed two regularization
functionals to prevent them from decreasing suddenly and to
consider the influence of the cross-channel [4]. However, this
depends on the initial condition. For example, if the initial
condition of x is an image with constant values, then ‖Cx‖2

is zero. This makes it difficult to have an optimum solution
by minimizing the minimization functional in the iteration.

We propose a regularization functional which considers
the noise caused by the motion estimation error. The regu-
larization functional should be determined by considering the
motion estimation error in the channel and the relationship
between it and the other channels. Let the motion estima-
tion error in k-th channel be ek. The regularization functional
should be inversely proportional to ek, i.e.

αk(x) ∝ 1
e2
k

. (11)

Among various inversely proportional candidate functions,
we choose the inversely proportional function as

αk(x) ∝ exp(−e2
k). (12)
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Motion Case1 Case2 Case3 Case4

(δh,1, δv,1) (0.0,0.0) (0.0,0.0) (0.2,0.2) (0.0,0.0)
(δh,2, δv,2) (0.1,0.2) (0.1,0.4) (0.0,0.2) (-0.1,0.2)
(δh,3, δv,3) (0.4,0.1) (0.4,0.2) (0.5,0.0) (0.3,-0.1)
(δh,4, δv,4) (0.5,0.5) (0.3,0.3) (0.4,0.4) (0.4,0.3)

Table 1. The inaccurate motion compared
with the accurate sub-pixel motion information
{(δh,k, δv,k)|(0.0, 0.0), (0.0, 0.5), (0.5, 0.0), (0.5, 0.5)},
for k = 1, 2, 3, 4.

As it has been mentioned in Sec.3, the variance of the noise
caused by ek is proportional to the multiplication of e2

k and
the high-frequency energy. In other words, e2

k is proportional
to the variance of the noise caused by ek and is inversely pro-
portional to the high-frequency energy. Therefore, Equation
(12) can be rewritten as

αk(x) ∝ exp(−‖yk − Wkx‖2

‖Cx‖2
). (13)

Since ‖Cx‖2 is the same value in every channel, ‖Cx‖2 can
be changed into a parameter PG. Therefore, we choose the
regularization functional αk(x) as

αk(x) = exp(−‖yk − Wkx‖2

PG
). (14)

4.2. Gradient Descent Optimization

We consider a gradient descent method for minimizing the
minimization functional in Eq.(9) and estimate a high-resolution
image. The update procedure for an estimate can be written
as

x̂n+1
r = x̂n

r − βn∇xF(αk(x̂n), x̂n), (15)

for n = 0, 1, 2, · · · and r = 1, · · · , N . These partial deriva-
tives are given by differentiating Eq.(9)

∇xF (αk (x),x) =
p∑

k=1

{
2αk(x)WT

k (Wkx − yk)

+∇xαk (x)‖ykWkx‖2
}

+ 2γCTCx, (16)

where αk (x) is differentiated Eq.(14) is used as

∇xαk (x) = 2αk(x)WT
k (Wkx − yk)

( 1
PG

)
. (17)

Equation (16) can be rewritten as

∇xF (αk (x),x) =
p∑

k=1

α′
k (x)Wk

T(Wkx−yk)+2γCTCx,

(18)

PSNR(dB) Case1 Case2 Case3 Case4

Bi-cubic 23.721 23.721 23.721 23.721
CM1 27.688 27.140 27.068 26.364
CM2 28.847 28.214 28.096 27.885
PM 30.476 29.888 28.944 28.179

Table 2. The PSNR of the conventional reconstruction algo-
rithms and the proposed algorithm when the sub-pixel motion
is as in Table 1.

where

α′
k(x) = 2αk(x)

(
1 − ‖yk − Wkx‖2

PG

)
. (19)

Since both αk(x) and
(
1 − ‖yk−Wkx‖2

PG

)
consider motion

estimation error, α′
k(x) that is a multiplication of αk(x) and(

1−‖yk−Wkx‖2

PG

)
is more sensitive to motion estimation error

than αk(x). α′
k(x) control the update rate in each channel.

That is, a channel with less motion estimation error is more
updated. On the other hand, a channel with much motion
estimation error is less updated.

5. EXPERIMENTAL RESULTS

We set γ to be 0.2. PG is chosen to be
(
3 × max(‖y1 −

W1x ‖2, · · · , ‖yp − Wpx‖2)
)
. To compare with the pro-

posed algorithm, two reconstruction algorithms were used.
One is a CLS-based high-resolution reconstruction algorithm
described in [5]. We refer to this method as CM1. The other
referred to as CM2 is a reconstruction algorithm in [4] with
the irrational regularization functional. Four low-resolution
images are synthetically generated from a high-resolution shop
image which is translated with one of the sub-pixel shifts
{(0, 0), (0, 0.5), (0.5, 0), (0.5, 0.5)}, blurred, decimated by a
factor of two in both the horizontal and vertical directions. Al-
though the motion information of the simulated low-resolution
images is known exactly, we assume that the motion estima-
tion is inaccurate, as in the four cases shown in Table 1.

The partially magnified results of high-resolution image
reconstruction algorithms are shown in Fig.1. These results
are obtained by using Case 2 in Table 1. The bi-cubic in-
terpolated image is the poorest among the results since one
low-resolution image is only considered in the reconstructing
process. Compared to this method, the results of CM1 is im-
proved. However, since CM1 does not consider the inaccurate
motion information in each channel, the result of CM1 has
visual artifacts like white or black dot near edge. These vi-
sual artifacts can be reduced by increasing the regularization
parameter. However, this make the result to be over-smooth
or to lose important high-frequency components. To obtain
better solution, many trial and error tests or additional infor-
mation for the motion is needed. On the other hand, the re-
sults of CM2 and PM are are satisfactory in that the high
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(a) (b)

(c) (d)

Fig. 1. Partially-magnified images of results from shop image
: Reconstructed image by (a) Bi-cubic interpolation, (b) CM1,
(c) CM2, and (d) PM.

frequency of the reconstructed image is conserved while sup-
pressing the noise caused by the inaccurate motion informa-
tion. The PSNR of the reconstructed high-resolution image
for the four cases in Table 1 are presented in Table 2. This
table shows the proposed algorithm outperform the conven-
tional methods. To validate the proposed algorithm, The reg-
ularization functional versus the number of iteration for the
four cases in Table 1 is shown in Fig.2. These figures show
the values of the regularization functionals αk(x) are deter-
mined automatically according to the accuracy of the motion
information in each channel. This helps the proposed algo-
rithm to distinguish the channel with the inaccurate motion
information from the channel with the accurate motion infor-
mation.

6. CONCLUSION

In this paper, we proposed a high-resolution image recon-
struction algorithm to reduce the distortion caused by the in-
accurate motion information. To facilitate these, we analyzed
the noise caused by the inaccurate motion information. Based
on this analysis, we proposed a new regularization functional.
Since the proposed regularization functional is inversely pro-
portional to the noise, the distortion caused by the inaccurate
motion information is reduced clearly.
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Fig. 2. The proposed regularization functional αk(x), k =
1, 2, 3, 4, (a) Case1, (b) Case2, (c) Case3, and (d) Case4.
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