
SINGLE IMAGE SUPERRESOLUTION BASED ON SUPPORT VECTOR REGRESSION

Karl S. Ni, Sanjeev Kumar, Nuno Vasconcelos, Truong Q. Nguyen

ECE Dept, UCSD, La Jolla, CA 92093-0407

Abstract - Support vector machine (SVM) regression is consid-
ered for a statistical method of single frame superresolution in both
the spatial and Discrete Cosine Transform (DCT) domains. As op-
posed to current classification techniques, regression allows consid-
erably more freedom in the determination of missing high-resolution
information. In addition, since SVM regression approaches the su-
perresolution problem as an estimation problem with a criterion of
image correctness rather than visual acceptableness, its optimization
results have better mean-squared error. With the addition of struc-
ture in the DCT coefficients, DCT domain image superresolution is
further improved.

1. INTRODUCTION

Single frame superresolution, image upscaling, or image interpola-
tion is the process by which a single low resolution image is ex-
panded spatially to a higher resolution image. Along with the orig-
inal information inherent in a low resolution image, superresolution
requires additional information (i.e. new pixel values for new pixels)
to contribute so that the missing information that is required to create
the high-resolution image is provided. The process of determining
the values of the missing information is the crux of our problem.

Simpler techniques for single frame superresolution such as bi-
linear and bicubic interpolation only consider low-resolution image
information. The resulting upscaled image from these techniques is
often blurry and remains at lower resolution. For this reason, statis-
tical learning is preferred because additional information (other than
the low-resolution image) will be brought to the table. The appli-
cation of statistical learning to the superresolution problem can be
termed image estimation.

Many image estimation implementations [1] use classification
in order to achieve high-resolution counterparts. Whether the result
is dynamic filtering or simple addition of samples from a training
set, classification tends to “quantize” the output of the process when
considering the number of possible outputs. This limits the capacity
of the algorithm in such a way that the reconstructed image is only as
precise as the number of classes included in the learning algorithm.

In an attempt to remedy the problems introduced by classifica-
tion, a regression based approach concentrates on function estima-
tion rather than discriminating between classes. The remainder of
this work explores the application of Support Vector Machine regres-
sion to determine a regression for the relationship between known
and unknown elements in the superresolution problem.

This work is supported in part by the CWC and matching funds from the
U.C. Discovery Grant

2. A REVIEW AND EXPLANATION OF SUPPORT
VECTOR REGRESSION

Support Vector Machines (SVM) is a learning algorithm ([2] [3]),
with the ability to provide high-dimensional function estimation.
Support Vector Regression (SVR), the use of SVMs for regression,
operates in feature space to approximate unknown functions in out-
put space, thereby using nonlinear functions to linearly estimate an
unknown function.

For � � � , � � � 	 � � � , we have two inequalities that bound
the output points of the function to be estimated: one for the upper
boundary and one for the lower boundary. Suppose that we are given
a training set:

� � � � �
x � � � � �

x � � � � � � � �
x ! � ! � # (1)

where x $ � � % and � $ � � ,� � � 	 � � � , then it is possible to esti-
mate the function + - . 0 � with the following optimization.

1 3 45 6 7 8 6 7 ; 6 = 6 ?
�@ B C B � F G � I K F �

L
%M

$ O �
� Q R$ F Q S$ � �

subject to � T U � W $ � C X F Z � \ � $] K F Q R$
� $ \ � T U � W $ � C X F Z �] K F Q S$

K Q R$ Q S$ a b for � � � � � � L (2)

Slack variable vectors
Q R$ and

Q S$ correspond to the upper and lower
parameters in which the function + �

x � �
w d U �

x � F Z
is allowed to

deviate for a prespecified error and cost. The function
U - x 0 z

maps the features x to a higher-dimensional space for greater flexi-
bility. We can write the Lagrangian and express the dual problem to
obtain a better representation shown in (3).

+ �
x � � M

$
� e R$ \ e S$ � g �

x x $ � F Z
(3)

where g � i i � � U �
x � d U �

x � � k l m L l n + p L r s � t L .
The Kernel function is a dictionary of functions in high dimen-

sional space, and
e R v S

values guide these functions to create the
output + �

x � determined by the input x. The
e R v S

values (derived
from the Karush-Kuhn-Tucker conditions) are values that are learned
in the SVM regression and can be thought of as coefficients in fea-
ture space. Thus, given a feature x, we will use the function + �

x �
as defined by (3) to estimate a value as suggested by the training set
(1).

3. SPATIAL DOMAIN SUPERRESOLUTION

Given an � x � patch from a low resolution image, the proposed
algorithm predicts 4 pixels of a high resolution image corresponding
to the center pixel of the � x � patch.

II 601142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

In the terminology of (1), (2), and (3), we need to learn the out-
put label

� � � � �
x � � � � �

associated with the input�
x

� � � 	 � � � � � �
 � , where
�

is the � � � patch and
� � 	 � � �

denotes stacking all columns of a matrix as a single row.
This is a multiple output regression problem and in the literature

it is often solved as separate single output regressions. Recently,
there has been some work on learning vector valued function using
operator-valued kernel [4], but these methods are not yet well under-
stood. In this regard, we adopt the traditional method of treating a
multiple output regression problem as separate single output regres-
sion problems for each output dimension.

The separated output regression problems for each output di-
mension is stated as learning the four outputs

� � � � � � �
x � � � � for

� � � � � � � � � , given the input x � �
 � .
We use

�
-SVR [2] for learning the interpolation functions. Train-

ing data consists of sets of input-output pairs
� � � � � obtained from

high resolution test images and corresponding low resolution im-
ages.

The choice of kernel is especially important in this situation
since as opposed to other interpolation methods, the algorithm doesn’t
have access to individual pixels except via kernel evaluation result-
ing in a scalar.

4. DCT DOMAIN SUPERRESOLUTION

Applications such as JPEG, MPEG, and H.26X typically transform
raw images or video information into the DCT domain. The DCT’s
significant energy compaction alleviates the effects of estimation er-
rors in the higher frequencies if weighting is correctly evaluated.
Also, structural properties that make sense in the frequency domain
can be utilized, where the spatial or time domain equivalent is very
complex.

Fig. 1. The evaluation of a proposed algorithm’s approximation of
an image.

In Fig. 1, we have constructed an image from its corresponding
downsampled version after odd and diagonal pixels are removed.
To upscale the image, it is appropriate to observe how the image
was downsampled in the first place. As we are working in the DCT
domain, we will look at the decimation of a signal in that domain.

4.1. Decimation in Time

In image upscaling, we are typically trying to recover signal samples
that have been removed by decimation. Decimation in time (DIT)
by � retains every � � � sample of a signal. For decimation by two,� equals 2, and we retain all even samples while discarding all odd
samples.

There are several types of DCTs: DCT-I, DCT-II, etc. Most
signal compression algorithms rely on the DCT-II, to compress their

signals. The definition of � � �
 � � � , the N-point DCT-II, of a signal
� � � � is:

� � �
 � � � � � �
 � !
� # � � � � � 	 $ � � � % � & � � � �

% � � � � ' � � � � � � � � , � �
(4)

As reported by Yip and Rao [5], we can write the N-point DCT as
operations on combinations of even and odd samples.

By letting:

! � � � � � � # �!
- # � � � � % � � & � � % � , � � � 	 $ � % � � �

 � '(� � � � � � # � � !
- # � � � � % � � & � � % � & � � � 	 $ � � � % � & � � � �

�
(5)* � � �
 � � � � � � � ! � � � & (� � �+ - . � - /
 � � � ' � � � � � � � �

% , � �
(6)* � � �
 � � � 1 2 . 4

- 5 � � � % � � � & 2 . 4
- 5 � � � % � , � � �& 2 . 4

- 5 5 � � � % � � � & 2 . 4
- 5 5 � � � % � & � � � 7

(7)
This final expression allows us to decompose the image that we wish
to be estimated into what is known and what is unknown. Our known
signal is � � % � � , the even samples, and our unknown signal is � � % � ,� � and � � % � & � � , the odd samples.

4.2. Application of DCT Properties to Two Dimensions

The equivalent formulation in two dimensions is not trivial. The
amount of information that is lost from decimation is squared. From
(7), half of the information comes from the even samples and half of
the information from the unknown odd samples. In the 2-dimensional
case (decimation in space), only a quarter of information will be
known.

We use matrix representations to achieve corresponding expres-
sions analogous to those seen in Sec. 4.1. Defining

. as the
 � -
point DCT-I matrix and

. � as the
 � -point DCT-II matrix, we ex-
press their forms as:

. � � � 9::::;
� � � 0 0 0
� 	 $ � � /# � � 	 $ � � � /# � � 0 0 0
� 	 $ � � � /# � � 	 $ � � � /
 � 0 0 0
...

...
...

. . .

< ====> (8)

and

. � � � � 9:::;
� 	 $ � � � /
 � 	 $ � � � /
 � 0 0 0
� 	 $ � � @ � /
 � 	 $ � � B /
 � 0 0 0
� 	 $ � � D� /
 � 	 $ � � F /
 � 0 0 0
...

...
...

. . .

< ===> (9)

From (5), it is necessary to take the DCT-I from � � ' to
 � , yieldingG
 � & � H evaluation points rather than
G
 � H evaluation points. For

this reason,
. has an extra row over

. � and any input matrix must
be padded with an extra column of zeros to accommodate for the
matrix size.

To apply the DIT algorithm in two dimensions, it is necessary
to partition the two dimensional signal as has been done in the one-
dimensional case. In one dimension, the signal is partitioned into

II 602

even and odd portions. In two dimensions, decimation is done in
two directions, meaning there are four distinct partitions. The high
resolution image or two-dimensional signal, x, is thus decomposed
into four parts: x � � x � � x � � and x � , and these are organized as in (10).

x
�

� � � � � � � � � � � � � � � � � 	 � � � � � � 	 � � �
� � � � � � � � � � � � � � � � � 	 � � � � � � 	 � � � � � �
� � � � � 	 � � � � � � 	 � � � � 	 � 	 � � � � 	 � 	 �
� � � � � 	 � � � � � � 	 � � � � 	 � 	 � � � � 	 � 	 � � � �
� � � � � � � � � � � � � � � � � 	 � � � � � � 	 � � �
� � � � � � � � � � � � � � � � � 	 � � � � � � 	 � � � � � �

...
...

. . .

(10)

Decimation in space (DIS) yields only one in four pixel values, and
each matrix x � � � � � � � � � � � represents a grouping of possible re-
maining pixel combinations after conventional decimation by two in
each direction. We designate x � to be the remaining matrix left after
decimation.

Because the cosine transform is paraunitary, the 2-D DCT-II
transform of a matrix x is �� �� x �� � . (The matrix �� � supports an� � � DCT-II as opposed to

� � , which supports an � � � � � DCT-
II). This can also be written

� �
x �� � � � �� � � � , where essentially, the

transform has been taken in one direction and then another.
Applying DIT to a two-dimensional signal in one direction (say,

the horizontally) requires four matrix multiplications and results in
four terms (7). Applying the DIT in the remaining direction (ver-
tically) decimates each of these four terms into four smaller terms,
resulting in sixteen total terms.

The result, �� �� x �� � , can be grouped into the four terms relating
to x � , where � � 	 � � � � � and � . Each of these four terms is unique,
and we denote these matrices as � � , � � , � � , and � � , ((11) through
(14)).

� � � � ��
�

x �
0 � 0 � � � � � ��

�
x �
0 � � � � �

� �� �
x � 0 � � � � � �� x � � � (11)

� � � � ��
�

0
x �
0 � � � � � � ��

�
x �
0 � � � � �

� �� �
0 x � � � � � � �� x � � � (12)

� � � � ��
�

0 0 �
x � � � � � � ��

�
0 �
x � � � � �

� �� �
0 x � � � � � � �� x � � � (13)

� � � � ��
�

0 �
x � 0 � � � � � ��

�
0 �
x � � � � �

� �� �
x � 0 � � � � � �� x � � � (14)

The final result is shown in (15).

�
	 �� � � � " � � � � �� �� x �� � � $ �� � $
 � �%

� & � � � , (15)

for
" � � � � � 	 � ' ' ' � � . Because x was chosen as the remaining ma-

trix after decimation, the terms in the DIT equation as given in (15)
can only be exactly determined for � � 	 .

4.3. DCT Domain Support Vector Regression

Using the derivations in Sec. 4.2, the super-resolution problem has
the goal of recovering the DCT-II of a high-resolution image by as-
suming an observed DCT-II of the decimated version of it.

That is to say that, in the terminology of Sec. 4.2, given

DCT-II
�
x � � � $ �� $
 � � �� x � � � , �

we wish to solve for

�
	 �� � � � " � � � � $ �� $
 � �� � x �� � � , (16)

where x is twice as large in each direction or has twice the resolution
of x � .

This is exactly the inverse DIS problem, where
� �� x � � � exists

in � � from (11), and the remaining fifteen terms compose the recov-
ery problem of (15). We proceed to estimate x � , for � � � � � � and �
with only the knowledge of

� �� x � � � .
From (11), we know that all the terms in � � can be exactly

determined mathematically. This takes care of four of the sixteen
total terms that are required for the construction of � 	 �� � � � " � � � ,
and we need to estimate � � , � � , and � � in (15).

It is here that we can apply our SVR learning algorithm, where
the input to the algorithm is the DCT-II of x � , or

� �� x � � � . Thus,
our features are the set of DCT-II’s of possible x � ’s, and our ulti-
mate goal is achieving the corresponding DCT-II of x, the frequency
representation of the high resolution image.

Now, we can restate our problem as follows. Given
� �� x � � � ,

can we find � 	 �� � � � " � � � � �� �� x �� � , by using mathematical opera-
tions and SVR to estimate the rest of the terms given in Sec. 4.2?

As stated before, (11) allows us to exactly determine the terms
in (11) from

� �� x � � � . The sum of the rest of the terms (when � ��
) are estimated by SVR, and thus the SVR synthesis algorithm is
completely defined. The solution is

�
	 �� � " � � � � $ �� $
 � � � � � � � � � � � �

� $ �� $
 � � � � � � %
�

� . 0� 1 . 3� � 5 � � � � � 7 �
(17)

where the terms
 � � �� x � � � and

� � � � � �� x � � � � � �� x � � � �
� �� x � � � are exactly known, and

� � � � � estimates the remaining
terms shown in (18).

� � � � � 9
�%

� & � � � (18)

5. EXPERIMENTAL RESULTS

All algorithms were simulated in Matlab using the libsvm library [2].
Different parameter values were tried with Gaussian and polynomial
kernels, but due to the better performance of the Gaussian kernel,
subsequent experiments used only the Gaussian Kernel. The band-
width parameter of the Gaussian kernel was selected based on five-
fold cross-validation. All training and reconstructed images were
selected from various MPEG standard QCIF and CIF sized video
sequences.

For realistic applications, a large and generic training set should
be used to accommodate for any testing image. For ease of simula-
tion and time, our training sets were small and representative of the

II 603

specific testing image. In the spatial domain, this training set con-
sisted of a single frame similar to the testing frame in which every

�
�

�
patch (overlapping allowed) in a QCIF image was paired with

the four corresponding high-resolution pixels in the CIF image. In
the frequency domain, this training set consisted of nine frames sim-
ilar to the testing frame in which every �

�
� DCT block (overlapping

not allowed) in the QCIF images was paired with the corresponding
high-resolution summation values in 18. The results are shown in
Fig. 2.

For comparison purposes, Matlab’s imresize command was used
to upscale the QCIF images to CIF images using bilinear and bicu-
bic interpolation. We also implemented the algorithm proposed in
[6] and adapted it for its use in image upscaling, but results were
not promising enough for natural images. The higher order spectra
estimated by their algorithm seems to suffer from overfitting, which
is not surprising considering that there is no regularization involved.

(a) Original Image (b) Bilinear Interpolation

(c) Spatial Domain SVR (d) Frequency Domain SVR

Fig. 2. Reconstructed CIF frame 10 of “Bus” sequence. Zoomed in
to show the effect of proposed algorithm.

The resulting PSNR values for the “Bus” sequence in Fig. 2 are
as follows. As to be expected, bilinear interpolation in Fig. 2(b) has
the lowest PSNR (23.301 dB), because it doesn’t add any resolu-
tion, but rather averages out the observed information. Bicubic (not
shown) gives 23.209 dB. What is gained in spatial SVR is sharp-
ness, and we can see that in Fig. 2(c). The PSNR value for spa-
tial domain SVR is 25.995 dB. This sharpness also remains in the
frequency domain, however with the additional knowledge that the
high-resolution DCT is in the form of (18), we are able to add some
structure to our solution and thereby bring more information to the
table. This is prevalent in Fig. 2(d), and has PSNR value of 26.843
dB.

Fig. 2 can be seen as a sample of our results. Several other sce-
narios with variably sized training sets and reconstruction frame off-
sets were tested to varying degrees of success. Obviously for smaller

sample training sets, the quality of the proposed algorithm in both
domains degrades. In addition, when blocks in the training sets and
testing sets are similar except for a translational shift that is not an in-
tegral multiple of block size, then the block-based DCT coefficients
fail to capture this similarity. This can be alleviated to some extent
by using overlapping shifts of the same block area in the formation
of the training set, thereby capturing any translational shift that may
occur.

For additional results, images, and tables, please see consult re-
search pages on UCSD’s videoprocessing website at

http://videoprocessing.ucsd.edu/research/˜karl/
svr_sr.html.

6. CONCLUSIONS AND FUTURE WORK

We have proposed a single image superresolution algorithm based
on support vector regression. This algorithm utilizes information
learned from training data in addition to observed information, and
results in better PSNR than traditional methods.

There are a number of future projects that can be considered with
this work. In our experiments, the Gaussian kernel was inadequate
near regions with strong edges, underscoring the necessity of con-
structing kernels which are better suited for the needs of a particular
application domain. (Recently proposed kernel learning algorithms
[7] [8] should prove useful.) Another interesting recent development
is the learning of vectored functions using operator-valued kernels.
Apart from exhibiting a desirable attribute of unified treatment of
different components of input, such kernels should be able to extract
more information about the training data than a scalar-valued kernel.
Also, from an applications standpoint, the present algorithm can be
extended to reconstruction or denoising problems. Finally, compu-
tational complexity of SVM-based learning algorithms makes it es-
sentially unusable for applications with limited resources. A combi-
nation of aforementioned improvements can results in learning ma-
chines which make efficient use of limited resources.

7. REFERENCES

[1] W. Freeman, T. Jones, and E. Pasztor, “Example based
super-resolution,” IEEE Computer Graphics and Application,
March/April 2002.

[2] Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for
support vector machines, 2001, Software available at http:
//www.csie.ntu.edu.tw/˜cjlin/libsvm.

[3] V. Vapnik, Statistical Learning Theory, John Wiley & Sons Inc.,
1998.

[4] C. A. Micchelli and M. Pontil, “On learning vector-valued func-
tions,” Neural Computation, vol. 17, 2005.

[5] K. R. Rao and P. Yip, Discrete Cosine Transforms: Algorithms,
Advantages, Applications, Academic Press, Inc., 1990.

[6] M. O. Franz and Bernhard Scholkopf, “Implicit wiener series
for higher-order image analysis,” in Advances in Neural Infor-
mation Processing Systems, 2004.

[7] Gert R. G. Lanckriet, Nello Cristianini, Peter Bartlett, Lau-
rent El Ghaoui, and Michael I. Jordan, “Learning the kernel
matrix with semidefinite programming,” J. Mach. Learn. Res.,
vol. 5, pp. 27–72, 2004.

[8] C. S. Ong and A. J. Smola, “Machine learning using hyperker-
nels,” in International Conference on Machine Learning, 2003.

II 604

