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ABSTRACT

The accuracy of the inverse solutions obtained by imaging modal-

ities which use surface measurements can be significantly reduced

by even small modeling errors. One important type of modeling

error is inaccuracy in locating the sensors. In this paper, we first re-

port on the sensitivity to sensor mislocation of a known-geometry

inverse solution both through simulation and by calculating the

Cramér-Rao Lower Bound on the estimate variance. We then in-

troduce a method based on a likelihood ratio hypothesis test to use

the statistical behavior of the residuals to identify potential sensor

mislocation. Upon detection of sensor location error, we then pro-

pose an approach, based on Principal Component Analysis of the

residuals, to reduce the sensitivity of the reconstruction algorithm

to this kind of modeling error. We show the simulation results

using a method, introduced in our previous work, for Electrical

Impedance Tomography based on Boundary Element Methods.

1. INTRODUCTION

Many imaging modalities estimate an unknown value inside a vol-

ume from measurements on its surface. Typical examples are Elec-

trical Impedance Tomography (EIT), which estimates the conduc-

tivity map inside a volume from electrical measurements on its

surface, and Diffuse Optical Tomography (DOT) in which opti-

cal properties are estimated using optical surface sensors. These

imaging modalities are in general badly posed, and thus are sen-

sitive to even small modeling errors. In modalities which depend

on spatially-localized surface measurement sensors, inaccuracy in

locating those sensors is an important type of modeling error. In-

deed, for EIT, recent reports show that accurate electrode position

is a critical component to obtain good static conductivity maps

[1, 2]. In this work, we concentrate on EIT as our application of

interest, and thus the details of our forward modeling and inverse

solution are EIT-specific, but the problem, the approach, and the

proposed improvement are more widely applicable.

In our approach to EIT, in which we are interested in imag-

ing inside the torso, head, or other region of the body, we stabilize

the ill-posedness by assuming that the value of interest is piece-

wise constant inside the volume, with a relatively small number of

distinct regions, e.g., various internal organs in the torso, and that
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the region boundaries are known, for example from prior anatom-

ical imaging. In this technique, if the geometric model is accurate

enough, the forward problem can be solved to within the precision

of the measurement system, which makes it possible to obtain a

reliable image [3]. The effects of inaccuracy in locating the sur-

face sensors have been studied by many researchers; for example

see [1, 4]. Since there are no common parameters between these

papers, the results of them are difficult to compare with each other.

Based on the known-geometry and piecewise-constant con-

ductivity assumptions mentioned above, in [5, 6, 7] we have in-

troduced two EIT algorithms, one based on the Boundary Ele-

ment Method (BEM) and the other on the Finite Element Method

(FEM). In this paper, we first briefly report the results of our study

on the sensitivity of those inverse EIT techniques to electrode mis-

location via calculation of the Cramér-Rao Lower Bound (CRLB)

on the estimate variance. We then present a method to use the sta-

tistical behavior of the residuals to identify potential sensor mislo-

cation, based on a likelihood ratio hypothesis test. Upon detection

of sensor location error, we propose an approach, based on Prin-

cipal Component Analysis (PCA) of the residuals, to reduce the

sensitivity of the reconstruction algorithm to this kind of modeling

error. We emphasize that although we show the simulation results

only for EIT, the same methods and discussion are valid for other

imaging modalities which use surface measurements.

2. SENSITIVITY TO SENSOR LOCATION ERROR

Fig. 1 shows the geometry which we used for our modeling and

simulations. To test the sensitivity of our known-geometry BEM-

based inverse EIT solution to electrode misplacement, we com-

puted a forward model using the geometry shown in Fig. 1, but

simulated the measurements using the same model but with the

electrodes misplaced. No other noise was added to the measure-

ments. We have both run Monte-Carlo testing and calculated the

CRLB for a variety of measurement protocols and two different

imaging types. The CLRB calculation is based on the analytical

expression for the Jacobian, which we describe for our BEM and

FEM forward models in [5, 6]. The CRLB results, which agree

with the Monte-Carlo simulations, show that the background con-

ductivity estimated fairly stably with one electrode mislocated by

as much as 20% of its size if one uses an appropriate method to

inject current and measure voltage. (In particular it is key to mea-

sure voltage on the electrodes which are injecting current.) How-

ever, the conductivity of the inhomogeneity is much more sensi-

tive, with a variance considerably larger than the value of the con-

ductivity itself with 20% mislocation error of only one electrode.
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(a) Side view. (b) Top view.

Fig. 1. Computational geometry showing the test tank, internal

inhomogeneity, and eight surface electrodes.

3. DETECTING THE SENSOR MISLOCATION

In this section we apply a detection procedure to test for the pres-

ence of mis-located sensors. If there is no error in the sensor posi-

tions, and the forward model is reasonably accurate, we expect the

difference between the measurement and the model prediction, i.e.,
the residual, to be merely due to measurement noise, and hence

spatially uncorrelated. In this section we describe a procedure to

apply an appropriate statistical test from the multivariate statisti-

cal literature to test whether the residuals are in fact uncorrelated.

The procedure is based on making multiple measurements; in EIT

one does this by necessity either by using different combination of

current injection electrodes or by using a set of different weights

on the injection electrodes to create a sequence of spatial “current

injection patterns”.

Let X1, X2, . . . , XN denote the residual vectors correspond-

ing to N different measurements. Each vector has L elements,

where L is the total number of sensors. Let us assume these residu-

als are independent NL(µ, Σ) random vectors. Now if these resid-

uals are only due to the measurement noise (and hence spatially

uncorrelated), the spatial covariance, denoted by Σ, will have the

structure of an identity matrix. Therefore, testing the hypothesis

that there is electrode misplacement in the model is equivalent to

testing the null hypothesis H0 : Σ = λIL against the alternative

H1 : Σ �= λIL, where λ is unspecified. This null hypothesis H0

in the statistics community is called the hypothesis of sphericity,

because when it is true, the contours of equal density in the normal

distribution are hyperspheres [8].

We use a Neyman-Pearson approach in which we fix the size

of the test α, i.e. , the probability of rejecting H0 when in fact it is

true (Type I error), and then find a test which minimizes the type

II error, mistakenly accepting H0. This leads to a likelihood ratio

test. For testing sphericity, it is shown in [8] that the likelihood

ratio test of size α of H0 : Σ = λIL, where λ is unspecified,

rejects H0 if

V0 ≡ det S`
1
L

tr S
´L

≤ kα, (1)

where S = 1
N−1

PN
i=1

`
Xi − X̄

´ `
Xi − X̄

´T
, and kα is chosen

so that the size of test is α.

Determining the threshold kα and calculating the power of the

test requires the distribution of V0, commonly called the elliptic-
ity statistic [8]. Some distributional results have been obtained in

[8]; the details are beyond the scope of this paper. Except in some

special cases, the exact distributions are extremely complicated,

and so asymptotic distributions are often used. Here, we use the

asymptotic distribution of the likelihood ratio statistic first given

explicitly by Anderson [9]. Using this distribution, we can com-

pute a p-value:

p-value = P
`
χ2

f = x
´

+
γ

M2

ˆ
P

`
χ2

f+4 = x
´ − P

`
χ2

f = x
´˜

,

(2)

where

γ =
(L + 1)(L − 1)(L + 2)(2L3 + 6L2 + 3L + 2)

288L2
,

M = (N − 1) − 2L2 + L + 2

6L
,

x = −M log V0, f =
L(L + 1)

2
− 1,

and P
`
χ2

f = x
´

is the χ2 cumulative distribution function (cdf)

with f degrees of freedom at x. After computing the p-value, we

decide the sphericity test as:j
p-value ≤ α ⇒ reject H0 ⇒ sphericity not reasonable

p-value > α ⇒ accept H0 ⇒ sphericity reasonable.

If we reject H0 we believe that the electrodes are misplaced. In

the next section we propose a technique to reduce our sensitivity

to this mislocation when we detect it.

4. SENSITIVITY REDUCTION

We now propose an approach based on Principal Component Anal-

ysis (PCA) to reduce the sensitivity of the inverse solution to the

sensor misplacement, and hence to improve the reconstruction re-

sults, if sensor mislocation is detected by the procedure described

in the preceeding section.

If the null hypothesis of Sec. 3 is rejected, it is still possible

that the L − 1 smallest eigenvalues are equal. If this is true, and if

their common value (or rather an estimate of it) is small compared

to the largest (estimated) eigenvalue, then most of the variation

in the sample is explained by the first principal component. In

that case we can filter out the effects of the sensor location error

by projecting the entire problem onto the subspace defined by the

remaining L − 1 eigenvectors. Even if a test for statistical equal-

ity among the L − 1 smallest eigenvalues is rejected, we can test

whether the L−2 smallest eigenvalues of Σ are statistically equal,

and so on. In practice then, we test sequentially the null hypothe-

ses

Hk : λk+1 = · · · = λL, (3)

for k = 0, 1, · · · , L − 2, where λ1 ≥ · · · ≥ λL > 0 are the

eigenvalues of Σ. We saw in Sec. 3 that the likelihood ratio test of

H0 : λ1 = · · · = λL is based on the ellipticity statistic V0 in (1).

The likelihood ratio statistic for testing the null hypothesis (3) is

V
N/2

k , where

Vk ≡
QL

i=k+1 si“
1

L−k

PL
i=k+1 si

”L−k
. (4)

The proof can be found in [8].

Going through the details of deriving the asymptotic distribu-

tion of the statistic Vk when the null hypothesis Hk is true, once

again, is out of the scope of this paper; details are in [8]. If N is
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large, it is shown there that an approximate test of size α of the

null hypothesis Hk is to reject Hk if

Pk > c

„
α;

(q + 2)(q − 1)

2

«
(5)

where

Pk = −
"
N − k − 2q2 + q + 2

6q
+

kX
i=1

s̄2
q

(si − s̄q)
2

#
log Vk,

q = L − k, s̄q =
1

q

LX
i=k+1

si,

and c(α; r) is the upper 100α% point of the χ2
r distribution.

Our algorithm, then, when it detects electrode error by reject-

ing H0, sequentially tests the null hypotheses Hk, k = 1, · · · , L−
2, to find the L − k smallest equal eigenvalues of Σ. We assume

these equal eigenvalues correspond to the spatially white Gaus-

sian measurement noise, and thus that the corresponding principal

component eigenvectors span the space of the measurement noise

and that the remaining eigenvectors correspond to the error in the

knowledge of the sensor locations. Therefore, we may hope to

reduce the effects of the sensor mislocation on the residuals by

projecting onto the measurement noise space. In order to apply

this idea, we run our inverse solution a second time, initializing

the unknowns at the values retrieved by the first run of the inverse

solution, and projecting the residuals to the measurement noise

space.

5. RESULTS

We used our BEM-based known-geometry inverse EIT method [5]

and the geometry shown in Fig. 1 for our simulations. We ran-

domly moved all eight electrodes, moving each electrode accord-

ing to a uniform random variate up to 5% of its size to either the

left or right. We defined the average movement of the electrodes as

the ratio of the sum of the absolute misplacement of all the elec-

trodes to the total number of electrodes. Due to the discretized

specifications of the tank boundary mesh, this average movement

is a number in {0 : 0.625 : 5} (in MATLAB notation). We re-

peated the random trials enough times to ensure that we have all

of the values in this sequence represented in our data set at least

7 times, then averaged over the results corresponding to the same

average percent movement of the electrodes. (Note this means that

the number of trials per any particular averaged movement is thus

a variable.) In the results presented here we had between 7 and 12

trials for each value of the average; the resulting number of trials

for each case is reported in the last column of Table 1. After mov-

ing the electrodes, we simulated the application of current patterns

which would be optimal for the homogeneous cylindrical tank and

calculated the voltage on the electrodes. We then added spatially

uncorrelated Gaussian noise at a specified SNR to these voltages

to simulate the measurements for a system in which both sources

of noise exist: electrode mislocation and measurement noise. Us-

ing eight electrodes we can apply only seven linearly independent

current patterns; to reduce the variance of our estimate of S, and

thus the accuracy of the sphericity test, we applied the same set of

seven current patterns several times, with different measurement

noise. We used the noisy voltages from the repeated applications

to estimate S but only used the measurements from the first set for

our inverse solution, that is to retrieve the unknown conductivities.
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Fig. 2. p-values as a function of the average percent movement of

the eight electrodes, for different signal to (additive) noise ratios;

four repetitions of the set of optimal current patterns was used to

compute the p-values. True values: σ1 = 1 and σ2 = 4.

We note that this repeated application of the currents is not a prob-

lem in practice; once the measurement setup is in place it is easy

and fast to apply the current patterns repeatedly.

Fig. 2 shows the p-values resulting from the sphericity test,

as a function of the average percent movement of the eight elec-

trodes, for different signal to (measurement) noise ratios. We used

four repetitions of the seven sets of current patterns to compute

the p-values in order to decide if the electrodes were misplaced

or not. Whenever the p-value is less than α = 0.05 (shown as

a dashed line on Fig. 2), the algorithm reports that the electrodes

are misplaced. We observe that for high SNR the algorithm de-

tected the electrode misplacement, even as small as 0.625%, with

good accuracy (small p-value). When the SNR was low (35dB),

the algorithm did not perform well. Other than the 35dB SNR

case, the only mistake the algorithm made, i.e. wrongly accepting

the hypothesis of “no electrode mislocation” (a type II error), was

when SNR was 40dB and the average percent movement of the

electrodes was 0.625%.

One may expect to improve the performance by using more

current patterns, and hence more measurements. To test this idea,

we used different numbers of repeatitions of the sets of current

patterns at an SNR of 40dB; results are shown in Fig. 3. As ex-

pected, the algorithm performed better when using more current

patterns. Using more than six sets of current patterns, the algo-

rithm detected 0.625% average movement of the electrodes. Even

for 35 dB (results not shown here to save space), by using nine

extra sets of current patterns the algorithm was able to detect the

electrode mislocation when the average percent movement of the

electrodes was 1% or more.

To test the technique we proposed to reduce the sensitivity of

the reconstruction to the sensor mislocation, we used the same data

and geometry described before. Table 1 shows the results for the

case where SNR due to the additive spatially white Gaussian noise

is 40dB. In this table, we report the reconstruction errors for both

σ1 and σ2 after the first run of the inverse solution, ∆σ1 and ∆σ2,

as well as the reconstruction error for σ2 after the second run of the

inverse solution, ∆σ′
2. For the second run of the inverse solution,

since we have observed from CLRB and Monte-Carlo experiments

that the background conductivity, even with sensor misplacement
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Fig. 3. p-values as a function of the average percent movement

of the eight electrodes, using different numbers of repetitions of

optimal current patterns, with SNR=40dB.

Table 1. Percent error in retrieved conductivities after the first and

second runs of the inverse solution for the model shown in Fig. 1 as

a function of the average percent movement of the eight electrodes.

SNR due to the additive spatially white Gaussian noise is 40dB

SNR = 40dB

Average Elecs 1st Run 2nd Run No. of

Movement (%) ∆σ1(%) ∆σ2(%) ∆σ′
2(%) Trials

0.625 0.1 15.7 21.4 9

1.250 0.2 16.3 19.1 12

1.875 0.1 17.6 11.3 10

2.500 0.2 21.7 10.2 9

3.125 0.2 23.1 15.9 8

3.750 0.1 27.6 17.2 7

4.375 0.1 26.9 21.4 10

5.000 0.2 26.1 18.7 8

in the model, can be retrieved accurately, we fixed σ1 at the value

found in the first run of the inverse solution to allow our non-linear

inverse solution to converge more rapidly. In these simulations,

in which eight electrodes were used, the algorithm projected the

residuals to the space spanned by the seven principal component

coefficient vectors corresponding to the seven smallest eigenval-

ues of the spatial covariance matrix, as suggested by the nested

sphericity tests described above.

We observe that we have been able to reduce the reconstruc-

tion error for σ2 when the average movement of the electrodes is

1.5% or more. For example, we could reduce this error by more

than 10% when the electrodes had been misplaced by 2.5% on

average. It is also interesting to note that when the electrodes mis-

location is small, although the algorithm is able to detect it, ignor-

ing the largest principal component of the residuals increases the

reconstruction error. One reason may be that in this case, by ig-

noring that principal component, we lose more useful information

than we gain by suppressing the noise incurred from the electrode

misplacement. We note that using the p-value for each test, we can

decide if the electrodes misplacement detected by the algorithm is

small, and thus if there is no need to run the inverse solution for

the second time.

6. CONCLUSIONS AND DISCUSSION

Even a small error in the knowledge of the sensor positions may

produce a large error in retrieving the unknown values using imag-

ing modalities which use surface measurements, as confirmed by

both CLRB results and Monte-Carlo studies in the case of known-

geometry EIT. To detect potential sensor mislocation, having the

geometrical model of the object, we proposed a method based on

statistical hypothesis testing. If misplacement of the sensors is de-

tected, we can reduce the effect of this sensor mislocation in an

inverse solution for the conductivities using the PCA-based tech-

nique we proposed in this paper.

The methods proposed require that the experimenter make ex-

tra measurements while collecting the data; however this can easily

and rapidly be done when the experimental setup is ready.

We implemented the algorithms in MATLAB with some help

from the Statistic Toolbox. Testing the sphericity can be done

rapidly; if sensor mislocation is detected, applying the PCA-based

technique requires a second run of our iterative inverse solution,

which increases the total computational burden of the reconstruc-

tion process.

Studying other invariant test statistics which can be used for

the sphericity test, and improving the sensitivity reduction tech-

nique, are subjects of on-going work.
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