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ABSTRACT
In this contribution, the Lee and Rosenfeld’s local Shape

From Shading (SFS) algorithm, the Tsai and Shah’s linear
SFS algorithm and the Bichsel and Pentland’s propagation
SFS algorithm are investigated with the aim of selecting
the most suitable for three-dimensional shape estimation of
clusters of mammalian Baby Hamster Kidney cells (BHK
cells) from an intensity image captured by an in-situ mi-
croscope in an industrial mammalian cell culture process.
All three were implemented and tested using several thou-
sand intensity images captured under varying experimen-
tal conditions. The Bichsel and Pentland’s SFS algorithm
was finally selected as the most suitable algorithm for three-
dimensional shape estimation of BHK cell clusters. It is fast
and provides less noise and more detailed depth estimates
and therefore the best overall performance.

1. INTRODUCTION

An in-situ microscope is an instrument to capture and ana-
lyze intensity images of cells in a defined volume inside of
a bioreactor with minimal operator intervention and without
the risk of contaminating the culture [1, 2, 3]. The cell den-
sity inside of the bioreactor can be estimated by means of
image analysis algorithms from these captured intensity im-
ages in near real-time [4]. So far, the image regions of the
cell clusters are first segmented by applying a Maximum-
Likelihood Thresholding technique [5, 6]. A cluster is a
group of one or more cells that are very close to each other,
almost overlapping (see Fig. 1). Then, assuming that the
cells build clusters only along a plane parallel to the cam-
era plane, the number of cells inside of each segmented re-
gion is estimated by maximizing the variance of the circular
Hough transform of the edges inside of it. The edges are ex-
tracted by applying the Smallest Univalue Segment Assim-
ilating Nucleus Algorithm (SUSAN). The total cell density
is the sum of each segmented region’s estimated number of
cells divided by the known volume.

Experimental studies on cultures of mammalian Baby
Hamster Kidney cells (BHK-cells) have shown that the pre-

viously explained cell density estimation algorithm works
well for cultures up to cell densities of 5x106 cells/mL. For
higher cell concentrations the estimated cell density is lower
than that obtained with established off-line methods. This
difference is primarily caused by aggregation of the BHK
cells in clusters in the three-dimensional space and not only
along a plane parallel to the camera plane as assumed in [4].
Thus, for higher cell concentrations the three-dimensional
shape of the BHK cell clusters must also be estimated and
taken into account for cell density estimation.

In this paper, an algorithm for three-dimensional shape
estimation of the BHK cell clusters will be developed. The
shape will be estimated from the gradual variations of shad-
ing in the intensity image (shape from shading). A lam-
bertian image formation was assumed with a known light
source direction opposite to the viewing direction. Instead
of developing a new algorithm from scratch, first, three of
the most popular Shape From Shading (SFS) algorithms de-
scribed in the literature will be implemented. Then, a num-
ber of experiments on real cultivation data will be performed
to assess their timing (CPU time) and ability to estimate
the three-dimensional shape of cell clusters. Finally, the
one that performs best will be selected as the most suitable
SFS algorithm for estimating the three-dimensional shape
of BHK cell clusters for in-situ microscopy.

This paper is organized as follows. In section 2, three
of the most popular SFS algorithms from the professional
literature are selected and briefly described. In section 3, the
selected SFS algorithms are implemented and tested with
real data. In section 4, a brief summary and the conclusions
are given.

2. SHAPE FROM SHADING ALGORITHMS

The SFS algorithms found in the professional literature can
be roughly subdivided into four groups: local algorithms [7,
8], linear algorithms [9, 10], propagation algorithms [11,
12] and the minimization algorithms [13, 14, 15, 16, 17, 18]
(see [19] for a comprehensive review). Here, instead of
evaluating all possible SFS algorithms only the most popu-
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Fig. 1. Original intensity image of BHK cells captured by
an in-situ microscope.

lar SFS algorithm of each group will be evaluated: the local
algorithm described by Lee and Rosenfeld in [8], the linear
algorithm described by Tsai and Shah in [10] and the propa-
gation algorithm described by Bichsel and Pentland in [12].
No minimization algorithm was considered because they are
known to be very slow although slightly more robust [19].

In the Lee and Rosenfeld’s SFS algorithm the object
shape is described by the surface slant and tilt, where the
tilt is defined as the angle between the projection of the sur-
face normal on the image plane and the x-axis and the slant
is defined as the angle between the surface normal and the
direction toward the viewer. The surface slant and tilt are
estimated with the aid of a coordinate system having one
axis in the assumed direction of the light source and assum-
ing that the surface is locally spherical at each point. In this
coordinate system the surface tilt is related to the direction
of the intensity gradient at the giving pixel. Assuming that
the surface has Lambertian reflectivity and that one of the
surface patches points toward the illumination direction, the
surface slant at each pixel is related to the quotient between
the intensity of the pixel and the intensity of the brightest
pixel of the image.

In the Tsai and Shah’s SFS algorithm the object shape is
described by the rate of change of depth along the x- and y
axis of the image plane, p and q, respectively (surface gra-
dient). The surface gradient is estimated from shading by
linear approximation of the reflectance map. First, the sur-
face normal, p and q, are linear approximated using discrete
finite differences. Then, the reflectance map is linear ap-
proximated in terms of depth using the Taylor series of the
reflectance up to the first order term. Finally, p and q are

Fig. 2. Zoom of a rectangular region of the estimated depth
obtained with the Lee and Rosenfeld’s SFS algorithm.

recursively estimated by using a Kalman Filter.
In the Bichsel and Pentland’s SFS algorithm the object

shape is described by the surface height above the image
plane. Giving initial values at the singular pixels of an im-
age, i.e. the pixels of maximum brightness, the Bichsel and
Pentland’s SFS algorithm propagates the height iteratively
with a Gauss-Seidel scheme as follows. First, the slopes
along eight discrete directions are estimated at each pixel
of the image. Each slope p is estimated by rotating the
coordinate system of the image plane such as the x-axis
is aligned with the discrete direction and then taking the
derivative of the Lambertian reflectance map with respect
to q, setting it to zero and then solving for p and q. For each
discrete direction a value of the pixel height is estimated by
adding the current height of the first neighboring pixel found
along the discrete direction and the corresponding estimated
slope. Finally, the maximal value is selected and considered
to be the new updated pixel height for the next iteration.
This propagates the height information always away from
the light source to guarantee the convergence of the algo-
rithm (minimum downhill propagation direction). The up-
dated pixel height becomes also immediately available for
estimation of the height of other pixels in the same itera-
tion. The convergence of the algorithm is accelerated by al-
tering the way the pixels are sequentially processed at each
iteration. As in [19], the initial hight values for the singu-
lar points are assigned a fixed positive value of 55 and the
hight values of the other points are initialized to the large
negative value of -1.0e10. Since the surface gradients in
low brightness regions are close to zero for most directions
except the directions which form a very narrow angle with
the illumination direction, the original image is rotated in
order to align one of the discrete directions with the illu-
mination direction so that the existence of a solution is not
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Fig. 3. Zoom of a rectangular region of the estimated depth
obtained with the Tsai and Shah’s SFS slgorithm.

further restricted. The inverse rotation is performed on the
resulting depth map in order to get the original orientation
back.

3. EXPERIMENTAL RESULTS, PERFORMANCE
EVALUATION AND FINAL SFS ALGORITHM

SELECTION

The three SFS algorithms described in section 2 were imple-
mented in C under Windows XP and tested on real cultiva-
tion data to assess their timing (CPU time) and ability to es-
timate the three-dimensional shape of cell clusters. The in-
tensity images of BHK-cell clusters (512x512 pixels square)
were captured by an in-situ microscope in an industrial cell
culture process. The experiment was performed on a Pen-
tium IV (3.06Gz) laptop with 0.5 GB RAM. The average
of the processing time per image was 0.525 s, 1.552 s and
1.816 s for the Lee and Rosenfeld’s algorithm, the Bichsel
and Pentland’s algorithm and the Tsai and Shah’s algorithm,
respectively. Experimental results obtained from one typi-
cal real intensity image will be depicted as an example.

Figure 1 depicts the original intensity image. Figs. 2, 3
and 4 show a rectangular region of the slightly rotated depth
estimates obtained with the Lee and Rosenfeld’s, the Tsai
and Shah’s and the Bichsel and Pentland’s SFS algorithms,
respectively. Low surface height are shown blue and high
surface height above the image red. It is possible to see
the different heights clearly inside of each cluster. This is
experimental evidence that the cells do build clusters in the
three-dimensional space and not only along a plane.

The estimated depth obtained with the Lee and Rosen-
feld’s algorithm is very noisy (see Fig. 2). This is caused by
the assumption that the real shape is locally spherical at each
point on the cluster surface. This assumption fails at edge

points between neighboring cells inside the clusters. The
estimated depth with the Tsai and Shah’s SFS algorithm is
also noisy and particularly very flat, i.e. all the cells seem
to be on the same plane (see Fig. 3). We believe that this is
because the linearization of the reflectance map, using the
Taylor series of the reflectance up to the first order term, is
not accurate enough for describing the reflectance map of
in-situ microscope BHK images. The estimated depth with
the Bichsel and Pentland’s SFS algorithm is less noisy and
more detailed (see Fig. 4).

We concluded after comparing the performance of the
three SFS algorithms that the Lee and Rosenfeld’s SFS al-
gorithm is the fastest but the estimated depth is very noisy.
Although the Bichsel and Pentland’s SFS algorithms is 2.89
times slower than the Rosenfeld and Pentland’s SFS algo-
rithm, the estimated depth is less noisy and much more de-
tailed. The Tsai and Shah’s SFS algorithm is the slowest
and the estimated depth is noisy and very flat.

The Bichsel and Pentland’s SFS algorithm is selected
here as the most suitable algorithm for three-dimensional
shape estimation of cell clusters. It is fast and provides less
noise and more detailed depth estimates, However, if the
processing time becomes an important issue, it is recom-
mended to use the Lee and Rosenfeld’s instead of the Bich-
sel and Roselfeld’s SFS algorithm.

4. SUMMARY AND CONCLUSIONS

In this contribution, the local SFS algorithm described by
Lee and Rosenfeld in [8], the linear SFS algorithm described
by Tsai and Shah in [10] and the propagation SFS algo-
rithm described by Bichsel and Pentland in [12] were im-
plemented. They were applied to real intensity images cap-
tured by an in-situ microscope showing clusters of BHK-
cells. The Bichsel and Pentland’s SFS algorithm was se-
lected as the most suitable algorithm for three-dimensional
shape estimation of BHK cell clusters, because it is fast and
provides less noise and more detailed depth maps than the
one by Lee and Rosenfeld or Tsai and Shah.

In the future work, the selected Bichsel and Pentland’s
SFS algorithm will be incorporated in the cell density esti-
mation algorithm described in [4]. The three-dimensional
shape of the cell clusters will be estimated and used for the
cell density estimation. We believe that this will improve
the accuracy and reliability of the cell counting at high cell
concentrations.
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Fig. 4. Zoom of a rectangular region of the estimated depth
obtained with the Bichsel and Pentland’s SFS Algorithm.
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