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ABSTRACT

We present two improved Multi-static Adaptive Microwave
Imaging (MAMI) methods: MAMI-2 and MAMI-C, for early
breast cancer detection. MAMI is one of the microwave imag-
ing modalities based the significant contrast between the di-
electric properties of normal and malignant breast tissues and
employs multiple antennas that take turns to transmit ultra
wideband (UWB) pulses while all antennas are used to re-
ceive the reflected signals. The MAMI methods we investi-
gate herein utilize the data-adaptive robust Capon beamformer
(RCB) to achieve high resolution and interference suppres-
sion. We will demonstrate the effectiveness of our proposed
methods for breast cancer detection via numerical examples
with data simulated using the finite difference time domain
(FDTD) method based on a 3-D realistic breast model.

1. INTRODUCTION

Early diagnosis is currently the best hope of surviving breast
cancer. Ultra-wideband (UWB) Confocal Microwave Imag-
ing (CMI), based on the significant contrast in the dielectric
properties between normal and malignant breast tissues [1], is
one of the most promising and attractive new screening tech-
nologies. The idea of CMI is to transmit UWB pulses from
antennas at different locations near the breast surface and re-
construct the image of the backscattered energy distribution
coherently from the recorded backscattered responses.

The data acquisition approaches and the associated signal
processing methods affect the CMI imaging quality. There are
three major data acquisition schemes: mono-static, bi-static,
and multi-static [2]. For multi-static CMI, each antenna in
a real aperture array takes turns to transmit a probing pulse,
and all antennas receive the backscattered signals. The multi-
static approach can give better imaging results than its mono-
or bi-static counterparts.

The challenge to CMI imaging is to devise signal process-
ing algorithms to improve resolution and suppress strong in-
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terferences caused by the breast skin, nipple, etc. For multi-
static ultra-wide band CMI, the data-independent DAS [3]
and data-adaptive RCB based [2] signal processing algorithms
have been considered. The data-adaptive methods can have
better resolution and interference suppression capability than
their data-independent counterparts.

In this paper, we propose two improved Multi-static Adap-
tive Microwave Imaging (MAMI) methods, i.e., MAMI-2 and
MAMI-C, to form images of the backscattered energy for
early breast cancer detection. For a focal point within the
breast, the complete recorded multi-static data can be repre-
sented by a cube (Figure 1 (a)). In [2], we have proposed
a MAMI approach, referred to MAMI-1 herein, which is a
two-stage time-domain signal processing algorithm for multi-
static CMI. In Stage I, MAMI-1 slices the data cube corre-
sponding to each time index, and processes the data slice by
the robust Capon beamformer (RCB) [4] to obtain backscat-
tered waveform estimates at each time instant. Based on these
estimates, in Stage II a scalar waveform is retrieved via RCB,
the energy of which is used as an estimate of the backscattered
energy for the focal point. MAMI-1 has been shown to have
better performance than other existing methods [2]. MAMI-
2 uses an alternative way of slicing the data cube in Stage I
before applying RCB: selecting a slice corresponding to each
transmitting antenna index. We will show that MAMI-2 tends
to yield better images than MAMI-1 for high input Signal-
to-Interference-Noise Ratio (SINR), but worse images at low
SINR. Therefore we propose an combined method - MAMI-
C, which yields good performance in all cases of SINR. We
will demonstrate the performance of the MAMI methods us-
ing data simulated with the Finite Difference Time Domain
(FDTD) method based on the 3-D hemispherical breast model.

2. DATA MODEL

We consider a multi-static imaging system, where K anten-
nas are arranged on a hemisphere relatively close to the breast
skin at known locations (see Figure 1 (b)). Before image for-
mation, we preprocess the raw received signals to remove
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backscattered signals from skin by subtracting a calibration
signal (formed by averaging all raw received signals), to align
all the recorded signals from the focal point at location r (the
focal point will be scanned in the entire breast volume to
form a 3-D image) by time-shifting, and to compensate for
the propagation loss of the signal amplitude (see [2] for de-
tails).

Let yi,j(t) denote the preprocessed backscattered signal
generated by the probing pulse sent by the ith transmitting
antenna and received by the jth receiving antenna, where t
denotes the time sample. Our goal is to form a 3-D image
of the backscattered energy E(r) from the complete received
data {yi,j(t)}, on a grid of focal points r within the breast,
with the scope of detecting the tumor. We model yi,j(t) as:

yi,j(t) = si,j(t) + ei,j(t),
i, j ∈ {1, · · · ,K}, t ∈ {0, · · · , N − 1},(1)

where si,j(t) represents the tumor response and ei,j(t) rep-
resents the residual term, which includes the thermal noise
and the interference. To cast (1) in a form suitable for the ap-
plication of RCB [4], we approximate the data model (1) by
making different assumptions.

MAMI-1 approximates the data model (1) differently:

yi(t) = a(t)si(t) + ei(t), (2)

where yi(t) = [yi,1(t), · · · , yi,K(t)]T ,
ei(t) = [ei,1(t), · · · , ei,K(t)]T , and si(t) denotes the backscat-
tered signal (from the focal point at location r) corresponding
to the probing signal from the ith transmitting antenna. The
vector a(t) in (2) is the array steering vector, which is ap-
proximately equal to 1K×1 since all the signals have been
aligned temporally and their attenuations compensated for in
the preprocessing step. In (2) we assume that the steering
vector varies with t but be nearly constant with respect to i
to simplify the problem slightly. It causes little performance
degradations to our robust adaptive algorithms.

MAMI-2 approximates the data model (1) differently:

yi(t) = aisi(t) + ei(t), (3)

where ai denotes the steering vector, which is again approxi-
mately 1K×1. In (3) we assume that the steering vector varies
with i, but is constant with respect to t.

In practice, the steering vectors a(t) and ai may be impre-
cise, in the sense that their elements may differ slightly from
1. The fact motivates us to consider using RCB for waveform
estimation. We assume that the true steering vector a(t) or ai

lies in uncertainty spheres given by

‖a(t) − ā‖2 ≤ ε1, and ‖ai − ā‖2 ≤ ε2, (4)

where ε1 and ε2 are the uncertainty size parameters, the choice
of which should be made as small as possible. Also, the
smaller the N or the larger the steering vector errors the larger
the parameters should be. Such qualitative guidelines are usu-
ally sufficient since the performance of RCB does not depend
very critically on the uncertainty size parameters [4].

3. MAMI-2

In Stage I, both MAMI-1 and MAMI-2 obtain K signal wave-
form estimates via RCB. In Stage I of MAMI-2, for the ith
probing pulse, the true steering vector ai can be estimated via
the covariance fitting approach of RCB:

max
σ2

i ,ai

σ2
i subject to R̂Yi

− σ2
i aiaT

i ≥ 0,

‖ai − ā‖2 ≤ ε2, (5)

where σ2
i is the power of the signal of interest, and

R̂Yi
=

1
N

YiYT
i (6)

is the sample covariance matrix with

Yi = [yi(0), yi(1), · · · , yi(N − 1)], Yi ∈ RK×N . (7)

By using the Lagrange multiplier method, the solution to this
optimization problem is given by:

âi = ā −
[
I + νR̂Yi

]−1

ā, (8)

where ν ≥ 0 is the corresponding Lagrange multiplier that
can be solved efficiently from the following equation (e.g.,
using the Newton method):

∥∥∥(I + νR̂Yi)
−1ā

∥∥∥
2

= ε2, (9)

since the left side of (9) is monotonically decreasing in ν.
Then we can apply the following weight vector to the received
signals to obtain the corresponding signal waveform estimate
of the backscattered signal (from the focal point r) for the ith
probing signal (see [4] for details):

ŵ2,i =
‖âi‖
K1/2

·
[
R̂Yi

+ 1
ν I

]−1

ā

āT
[
R̂Yi

+ 1
ν I

]−1

R̂Yi

[
R̂Yi

+ 1
ν I

]−1

ā
. (10)

Note that (10) allows the sample covariance matrix to be rank-
deficient. The beamformer output can be written as:

ŝi =
[
ŵT

2,iYi

]T
, ŝi ∈ RN×1, (11)

Repeating the above process for i = 1 through i = K, we ob-
tain K waveform estimates Ŝ2 = [̂s1, · · · , ŝK ]T ,Ŝ2 ∈ RK×N .

Similarly, in Stage I of MAMI-1, we obtain a set of wave-
form estimates Ŝ1 = [̂s(0), · · · , ŝ(N − 1)], Ŝ1 ∈ RK×N (see
[2] for details.)

Let {ŝ1(t)}t=0,··· ,N−1, and {ŝ2(t)}t=0,··· ,N−1 denote the
columns of the matrices Ŝ1 and Ŝ2, respectively. Since all
probing signals have the same waveform, we assume that the
true backscattered signal waveforms are (nearly) identical. So
in Stage II, we can employ RCB to recover a scalar waveform
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ŝ(t) from {ŝ1(t)} or {ŝ2(t)} (see [2] for more details on Stage
II of MAMI-1; Stage II of MAMI-2 is similar). Finally, the
backscattered energy E(r) is computed as:

E(r) =
N−1∑
t=0

ŝ2(t). (12)

4. MAMI-C

It is well-known that the errors in sample covariance matrices
(for example, the R̂Yi

above) and the steering vectors cause
performance degradations in adaptive beamforming [5]. Note
that, on one hand, MAMI-2 uses more snapshots (viz. N )
than MAMI-1 (viz. K) to estimate the sample covariance ma-
trix. Hence the sample covariance matrix of MAMI-2 is more
precise than that of MAMI-1. On the other hand, MAMI-1
employs RCB N times, whereas MAMI-2 uses RCB K times
(recall that N > K), so there is more “room” for robust-
ness in MAMI-1 than in MAMI-2, which means that MAMI-
1 should be more robust to steering vector errors. Therefore,
at high input SINR (when the sample covariance matrix er-
rors are more important) we can expect MAMI-2 to perform
better than MAMI-1, and vice versa at low input SINR (when
the errors in the steering vector are critical).

The above discussions together with the numerical exam-
ples presented later on, motivates us to consider combining
MAMI-1 and MAMI-2 to achieve good performance in all
cases of SINR. In the combined method, which is referred
to as MAMI-C, we use the two sets of K waveform estimates
yielded by Stage I of MAMI-1 and Stage I of MAMI-2 simul-
taneously in Stage II (note that MAMI-1 and MAMI-2 have a
similar Stage II). In this way the combined method increases
the number of “fictitious” array elements from K to 2K.

The combined set of estimated waveforms is denoted by

ŜC = [Ŝ
T

1 Ŝ
T

2 ]T , ŜC ∈ R2K×N . Stage II of MAMI-C
consists of recovering a scalar waveform from the columns of
ŜC , which we denote as {ŝ(t)}t=0,··· ,N−1. The vector ŝ(t) is
treated as a snapshot from a 2K-element (fictitious) “array”:

ŝ(t) = aCs(t) + eC(t), t = 0, · · ·N − 1, (13)

where aC is assumed to belong to an uncertainty set centered
at ã = 12K×1, and eC(t) represents the estimation error. Us-
ing RCB, we estimate aC and then obtain the adaptive weight
vector via an expression similar to (10):

ŵC =
‖âC‖
K1/2

·
(R̂C + 1

µ I)−1ã

ãT (R̂C + 1
µ I)−1R̂C(R̂C + 1

µ I)−1ã
, (14)

where µ is the corresponding Lagrange multiplier, and R̂C is
the following sample covariance matrix of ŜC defined similar
to (6). The beamformer output gives an estimate of the signal
of interest:

ŝ(t) = ŵT
C ŝ(t). (15)

Finally, the backscattered energy at location r is computed
using (12).
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Fig. 1. (a): multi-static CMI data cube model; (b): antenna
array configuration.

5. NUMERICAL EXAMPLES

We consider a 3-D breast model as in [2] in our numerical
examples. The 10 cm-diameter hemispherical breast model,
including randomly distributed fatty breast tissue, glandular
tissue, 2 mm thick breast skin, nipple, and chest wall, are de-
signed to represent the physical non-homogeneity of the hu-
man breast. A 6mm (or 4 mm) in diameter tumor is located
2.7 cm under the skin (at x = 70 mm, y = 90mm, z = 60
mm). We assume that the dielectric properties (permittivity
and conductivity) of the breast tissues are random distributed
around their reported typical values (see also Table 2 of [2].)
The dispersive properties of the breast tissues are modelled
according to a single-pole Debye model.

As shown in Figure 1, the antenna array consists of K =
72 elements that are arranged on a hemisphere 1 cm away
from the breast skin, on 6 layers with 12 antennas on each
layer. Each antenna of the array takes turns to transmit a
Gaussian probing pulse (an UWB pulse with frequency range
from near DC up to 5 GHz), and all 72 antennas are used
to receive the backscattered signals, which is simulated using
FDTD method. The grid cell size used is 1 mm × 1 mm ×
1 mm and the time step is 1.667 ps. Each preprocessed signal
has N = 150 snapshots.

The performance comparisons of MAMI-1 with other ex-
isting methods can be found in [2]. Our examples focus on
comparing MAMI-1 with the other two MAMI methods. In
the following examples, we add white Gaussian noise with
zero-mean and different variance values σ2

0 to the received
signals. We define SINR as:

10 log10

⎧⎨
⎩

1
K2

∑K
i=1

∑K
j=1

[
1
N

∑N−1
t=0 x̌2

i,j(t)
]

1
K2

∑K
i=1

∑K
j=1

[
1
N

∑N−1
t=0 Ǐ2

i,j(t)
]

+ σ2
0

⎫⎬
⎭ dB,

where x̌i,j(t) is the received signal due to the tumor only, and
Ǐi,j(t) is due to the interference (without tumor response). We
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(a) MAMI-C

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

X (mm)

Z
 (

m
m

)

Image: X−Z plane at Y=9cm

−40

−35

−30

−25

−20

−15

−10

−5

0

(b) MAMI-2
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(c) MAMI-1
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(d) MAMI-C
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(e) MAMI-2
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(f) MAMI-1

Fig. 2. The images of the 4 mm - diameter tumor, (a), (b), and
(c): at SINR = -12.5 dB; (e), (f), and (g): at SINR = -24.8 dB.

performed the simulation twice, with and without the tumor,
regarded the second set of received signals as Ǐi,j(t), and used
their difference as x̌i,j(t). All the images are displayed on a
logarithmic scale with a dynamic range of 40 dB.

Our numerical examples show that MAMI-C can detect
6mm-diameter tumor successfully in all cases of SINR. Due
to space limit, herein we will only show the reconstructed
images of 4mm-diameter tumor with different thermal noise
levels. The backscattered microwave energy, which is propor-
tional to the square of the tumor diameter, is much less in this
case than in the 6mm-diameter tumor case, which presents a
challenge to any image formation algorithm. In Figure 2 (a),
Figure 2 (b), and Figure 2 (c), at a low noise level (SINR = -
12.5 dB), MAMI-2 and MAMI-C yield images of comparable
qualities and they outperform MAMI-1. Figure 2 (d), Figure
2 (e), Figure 2 (f), shows the images produced via the MAMI
methods at a high noise level (SINR = -24.8 dB). Once again,
MAMI-C yields the best images.

Figure 3 presents the 3-D images of the 4 mm-diameter
tumor, for the low noise level cases. The 3-D images illustrate
the reconstructed backscattered energy outside the two cross-
sectional planes. The conclusions drawn from Figure 3 are
similar to those from Figure 2.

6. CONCLUSIONS

We have presented two improved multi-static adaptive mi-
crowave imaging (MAMI) methods - MAMI-2 and MAMI-
C - for early breast cancer detection. The MAMI methods
utilize the data-adaptive robust Capon beamformer (RCB) to
achieve high resolution and interference suppression. We have
demonstrated the effectiveness of the MAMI methods for early
breast cancer detection via numerical examples with data sim-
ulated using the finite difference time domain method based
on a 3-D realistic breast model. We have shown that the
MAMI-C method can detect tumors as small as 4 mm in di-
ameter based on the realistically simulated 3-D breast model.

(a) MAMI-C (b) MAMI-2 (c) MAMI-1

Fig. 3. The 3-D images of the 4 mm - diameter tumor, at
SINR = -12.5 dB.
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