
AN ENTROPY CODING SCHEME FOR

MULTI-COMPONENT SCALABLE MOTION INFORMATION
1

Toni Zgaljic, Marta Mrak, Nikola Sprljan and Ebroul Izquierdo

Multimedia and Vision Lab, Queen Mary, University of London

Mile End Road, E1 4NS, London, United Kingdom

{toni.zgaljic, marta.mrak, nikola.sprljan, ebroul.izquierdo}@elec.qmul.ac.uk

This work was supported by the European Commission under contract FP6-001765 aceMedia.

ABSTRACT

Fully scalable video bit-stream requires layered structure of

most of its components. For that reason few methods

targeting scalability on motion information have been

proposed over the last decade. However, layered

representation requires new entropy coding strategies able

to efficiently handling of redundancies between different

layers. In this paper three methods for entropy coding of

layered motion information are proposed. The influence of

these schemes on the reconstructed video quality has been

also studied.

1. INTRODUCTION

In applications where adaptability of multimedia content is

required, scalable coding has emerged as an inevitable tool.

For the adaptation of video content fine-granular scalability

is achieved using embedded coding of texture information.

To enable this, different approaches, originally developed

for still image coding, have been adopted. However, on low

bit-rates, when just a fraction of the full texture information

remains in the adapted bit-stream, it is desirable to have a

scalable structure of remaining data - motion information.

When a specific low bit-rate is targeted, transmission of

additional texture information can be achieved by

discarding a suitable amount of motion information. If a

well balanced ratio between texture and motion information

is achieved, the resulted adapted video sequences will show

better quality.

Although standard motion information coding

techniques provide unbeatable compression ratios, they do

not support scalable motion representations. In this paper

we focus on two main scalable representations of motion

information, namely motion with layered structure and

layered motion vector value scalability. For these two

representations we propose an entropy coding scheme that

enables layered coding. The proposed scheme distinguishes

implementations of binary and m-ary arithmetic coder with

context modeller. In such way data containing binary

symbols can be encoded through faster binary arithmetic

encoder. Similar to the approach introduced in [1] and in

order to exploit the correlation of the data being encoded,

prediction is used and prediction error is coded. Since some

inter-symbol redundancies still remain after prediction,

context modelling for encoding of binary symbols is

employed to achieve better compression. This is done by

following the schema reported in [2].

The remainder of this paper is organised as follows: In

section 2 the organisation and types of scalable motion

information are presented. Section 3 describes the entropy

coding technique. Selected results are reported in section 4

and the paper closes outlining the conclusions of this work

in section 5.

2. SCALABLE MOTION INFORMATION

Motion information consisting of macroblock partitioning

(motion structure), modes of macroblock and final nodes as

well as motion vector values is considered. In the same

applications, each motion block also contains the

information on reference frame index, which is included in

the motion block mode information. Without lost of

generality we use macroblock partitioning into square

blocks. The partitioning of a macroblock can be represented

by a tree structure as shown in Figure 1 for example using

two tree levels. The motion tree root corresponds to the

macroblock while the external (leaf) nodes correspond to

each final motion block used for the temporal

decomposition. For the external nodes of a motion tree

block the mode (intra and subclasses of inter modes) is

known. If a block is an inter block, the corresponding

external tree node carries the information on associated

motion vectors. Motion vector values belong to a finite set

whose number of elements depends on the motion vector

range and their precision, e.g. 1/4.

The types of scalability imposed on motion information

can be classified into two basic groups: scalability of motion

structure and scalability of motion vector values. It is also

possible to combine these two resulting in more flexible

II ­ 5611­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

r(1,3)r(1,2)

r(1,1)r(1,0)

r(2,1)

r(2,3)r(2,2)

r(2,0)

R

r3

r0

r2

r1

Figure 1 Macroblock partitioning described by a tree

structure.

representations.

Although the motion compensation is performed using

so called full structure, inverse operation at the decoder can

be performed using the subsets of the original motion trees.

Here, the subset (Tm) of one tree shares the same root node

as the original tree (T). The decoding from the subsets is

possible as long as the external nodes of the subsets carry

the information on the block mode and motion vectors. The

layers of the motion structure are formed by the coarser

trees and the differences between structure layers. The 0-th

layer consists of the coarsest subset of the motion tree (T0)

for each macroblock. If the targeted number of motion

structure layers is M, i.e., T = TM - 1, then each m-th layer

consists of the differential structure between two

consecutive trees, i.e. of (Tm \ Tm-1) and a properly chosen

connections between the Tm-1 and the differential structure.

As the temporal frames are obtained using full motion

structure, for the reconstruction, using coarser structure

motion vectors in internal full motion trees nodes have to be

carefully selected. The method recently proposed in [3]

enables optimal selection of motion vectors for the internal

nodes of the full motion trees for unidirectional UMCTF.

This method is also used in this work.

The scalability of compressed motion information can

be also achieved using scalable coding of motion vector

values. The main idea in such approaches is to use bit-plane

coding of the values or the combination of base layer (coded

using variable length code, VLC) and bit-plane coding. A

scheme named Precision Limited Coding (PLC) that enables

scalable representation of motion vector values has been

proposed in [4].

In this paper we combine these approaches to enable

higher motion scalability. Motion vectors corresponding to

each structure layer are encoded using PLC. The scheme for

joint encoding is presented in Figure 2. PL represents the

part of motion vector value (MV) that consists of the lowest

bit-planes (R1,..., RN) of MV. Each Ri is encoded in a

separate layer. The base layer consists of the differential

structure between structure layer m and structure layer

(m - 1). The entropy coding module is described in the

following section.

3. CODING OF SCALABLE MOTION

INFORMATION

For each layer of motion structure joint encoding with PLC

is proposed (see Figure 2). The compressed base layer of

m-th structure layer consist of motion structure related

parameters and corresponding precision limited components

of the motion vectors. The enhancement sub-layers consist

of lower bit-planes of motion vector values. PLC values are

differentially encoded by prediction from already encoded

PLC values in the entropy coding module. Modelling and

arithmetic coding scheme used for all components is based

on [5]. Depending on alphabet size of a symbol to be

encoded, either m-ary or binary arithmetic encoding engine

is used. The two encoding engines are distinguished

because binary arithmetic encoder requires less

multiplication and division operations comparing to m-ary

MV - PL RN RN-1

refinement

layers 1 … N

motion vector values

of m-th structure layer

R1

m-th layer of motion

structure

Base layer EN EN-1 E1…

enhancement layers

resulting bit-stream

for m-th structure layer

arithmetic coding

(m - 1)-th layer

data prediction and modelling entropy coding

module

precision limited

component

Figure 2 Modified PLC with joint encoding of motion structure layer.

II ­ 562

Binary

Arithmetic

Encoding

Engine

M-ary

Arithmetic

Encoding

Engine
Modeller

Context

Modeller

Encoded

BitstreamSymbol,

Data Type

Figure 3 Encoding block diagram.

arithmetic encoder. Also, the modelling stage for the binary

arithmetic encoder is less complex, therefore it is more

effective. However, m-ary codec is used for non-binarised

precision limited values of motion vector prediction

differences as it provides high compression efficiency for

those still highly correlated values.

Arithmetic encoding engine takes the probability

estimate of the symbol to be encoded from the modeller

which is updated with each occurring symbol. For the

binary encoding case exists an additional phase of context

modelling in which probability model is selected depending

on the previously encoded symbols.

The symbol on the encoder input can belong to one of

the data types shown in Table 1. For each data type number

of contexts employed and size of the alphabet is shown.

Data type
Number of

contexts

Alphabet

size

mv_diff_row - m-ary

mv_diff_col - m-ary

mv_map 3 binary

mv_ref_diff_row 2 binary

mv_ref_diff_col 2 binary

Table 1 Data Types and coding settings.

The mv_map data type represents motion tree structure,

i.e. partitioning of blocks into smaller ones. Therefore it

contains information if the current block of the current

structure layer is divided into the smaller blocks or not. The

alphabet size for this type is two and for coding modeller it

uses three contexts determined by the following rules:

0, if () () 0

_ 1, if () () 2

2, otherwise

actc left actc above

context no actc left actc above
,

where actc(left) = 1 if the block on the left of the current

block is further divided in the current layer, 0 if not, and

actc(above) = 1 if the block above of the current block is

further divided in the current layer, 0 if not. For modelling

within each context histogram of previously occurred

symbols is used.

The mv_diff_row and mv_diff_col data types represent

the difference between predicted and actual precision

limited values of motion vector row and column component

respectively. The alphabet size for these data types depends

on motion vector range, current level of temporal

decomposition, motion vector precision and number of

refinement bits. For the current layer of the motion

structure, neighbouring motion vectors in the same motion

structure layer and motion vectors from previous layers are

used for prediction. The predicted value of the current block

motion vector from the neighbouring blocks is calculated as

the sum of weighted motion vector values from the block

above and left of the current block. Weighting factors wi for

the neighbour block Bi are obtained using

)()(

),(

xpyxpx

xip

i
BNBN

BBN
w , (1)

where Np(Bi, Bx) is the number of neighbouring pixels

between the current block Bx and the neighbour block Bi.

Npx(Bx) and Npy(Bx) are the current block horizontal and

vertical dimensions in pixels respectively. Two scenarios

are shown in Figure 4. For prediction of motion vector

corresponding to block BX; motion vectors corresponding to

the grey shade blocks are used. For these cases

w1 = w2 = w5 = 0.5 and w3 = w4 = 0.25.

For the motion structure higher layers, motion vector

value of the parent node is also used to predict motion

vectors of its corresponding descendant nodes. Child nodes

of a specific parent node are all nodes in the sub tree for

which the parent node is the sub tree root node. This type of

prediction is used along with previously described

prediction from neighbouring blocks. Differential data is

sent to arithmetic encoder. For modelling, the histogram of

previously occurred symbols is used.

B2

Bx

B1

B5

Bx

B4

B3

Figure 4 Examples of blocks used in prediction.

The binary data types mv_ref_diff_row and

mv_ref_diff_col are used to signal if a row or column

component of a motion vector refinement bit has been

correctly predicted or not. Prediction is performed from the

same blocks as for mv_diff_row and mv_diff_col data types.

The value of the bit predicted from neighbouring blocks is

calculated as a nearest integer rounded sum of weighted bit

values in the neighbouring blocks. Weighting factors are

defined as in (1). Also, the values of the ancestor nodes

from previous layer of the motion structure are used for

prediction in the higher structure levels. For the

mv_ref_diff_row the modeller uses two contexts determined

by following rules:

0, if _ _ 0
_

1, otherwise

mv diff row
context no .

As probability estimator within each context histogram of

previously occurred symbols is used. For mv_ref_diff_col

II ­ 563

data type, context is determined in the same way but

considering mv_diff_col value instead of mv_diff_row.

4. EXPERIMENTAL RESULTS

The multi-component scalable motion and proposed entropy

coding scheme have been integrated in [6]. The tests were

performed on two sequences: "Basket" (4CIF, 30fps) and

"Mobile" (CIF, 30 fps). Each encoded sequence contained 3

refinement layers and 4 motion structure layers. Layers of

the motion structure were selected in such way that layer 0,

layer 1 and layer 2 contained 10%, 20% and 30% nodes of

the full motion structure nodes respectively. Motion block

size of 8x8 to 64x64 and 1/8 pixel precision were used.

Two tests have been performed. First test measures the

compression efficiency on each refinement layer and motion

map data with and without employed contexts proposed in

the previous section. Results are shown in Table 2.

Compression ratio (CR) is defined as

%100
_

_
1

bitsin

bitsout
CR , (2)

where out_bits and in_bits are the numbers of compressed

bits and uncompressed bits respectively for each data shown

in Table 2. It can be seen that the higher compression is

obtained with context modelling.

CR [%]
Data being compressed

Contexts

employed

[yes/no] “Mobile” "Basket"

no 1.65 1.97
1

yes 1.81 3.04

no 15.07 8.72
2

yes 16.76 13.21

no 35.03 17.40

Bitplane

refinement

layer (n)

3
yes 39.92 27.47

no 24.11 17.53
Motion map

yes 24.63 25.72

Table 2 Compression efficiency of the binary data types.

In the second test we have examined the influence of

the removal of the refinement layers on the decoding

quality. Results are shown in Table 3. The sequences were

decoded with full texture in order to avoid the influence of

rate-distortion method applied in the real scenarios and to

show the influence of lossy received motion information on

the decoding quality. However, the Mean Square Error

(MSE) caused by loss in motion information can be almost

linearly added to the MSE caused by loss of texture data.

In Table 3, k represents the number of layers that have

been removed from motion data. Those layers can be

refinement layers or motion structure layers. Results for

removal of refinement layers of motion vector values

("bitplanes") are displayed for full motion structure. On the

other hand, the results for removal of motion structure

layers ("map"), all bitplanes of motion vector values have

been decoded. Finally we have removed refinement layers

from motion vectors when only coarsest layer of motion

structure remains to obtain combined scalability. It can be

seen that that removing the motion structure layers gives

finer scalability than removing of refinement bits.

PSNRY after k removed layers

[dB] Sequence
Type of

scalability
k = 1 k = 2 k = 3

bitplane 38.76 30.04 23.25

map 43.45 41.60 39.18 "Mobile"

combined 35.64 29.21 22.96

bitplane 40.30 32.02 25.32

map 42.68 38.17 31.83 "Basket"

combined 31.24 28.92 24.47

Table 3 PSNR after removing layers.

5. CONCLUSIONS

In this paper a scheme for multi-component scalable motion

information coding has been presented. The scheme uses

efficient combinations of inter and intra layer predictions as

the base for modelling of probability states used by

arithmetic coding. Additional coding gains have been

achieved using the contexts in the probability estimation

stage. Influence of the different motion data layers removal

on the PSNR has been also studied. It has been shown that

removing a large number of nodes in the motion structure

performs better than removing large number of refinement

bits. However, it is also shown that finer granularity of

motion information can be achieved by applying both

strategies.

REFERENCES

[1] Barbarien, J., Munteanu, A., Verdicchio, F., Andreopoulos, Y.

Cornelis J., and Schelkens, P., "Scalable motion vector

coding," Proc. Int'l Conference on Image Processing (ICIP),

pp. 1321-1324, Singapore, 2004.

[2] Marpe, D., Schwarz, H., and Wiegand, T., "Context-Based

Adaptive Binary Arithmetic Coding in the H.264 / AVC Video

Compression Standard", IEEE Trans. Circuits and Systems for

Video Technology, Vol. 13, No. 7, pp. 620-636, July 2003.

[3] Mrak, M., Sprljan, N., and Izquierdo, E., "Motion Estimation

in Temporal Subbands for Quality Scalable Motion Coding",

Electronics Letters, Vol. 41, Iss. 19, pp. 1050-1051, 15

September 2005.

[4] Mrak, M., Abhayaratne, G.C.K., and Izquierdo, E., "On the

Influence of Motion Vector Precision Limiting in Scalable

Video Coding," Proc. 7th International Conference on Signal

Processing, ICSP 2004, Vol. 2, pp. 1143-1146, August 2004.

[5] Witten, I.H., Neal, R. and Cleary, J.G., “Arithmetic coding for

data compression”, Comm. ACM, vol. 30, pp. 520-540, June

1987.

[6] Sprljan, N., Mrak, M., Abhayaratne, G.C.K., and Izquierdo, E.,

"A Scalable Coding Framework For Efficient Video

Adaptation", Proc. 6th Int'l Workshop on Image Analysis for

Multimedia Interactive Services (WIAMIS 2005), Montreux,

Switzerland, April 2005.

II ­ 564

