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ABSTRACT

In motion-compensated wavelet based video coders, a very
precise motion estimation is necessary. However, a motion
vectors field of high precision is expensive in binary resources
and requires a great place in the bitstream compared to the
wavelet coefficients. Thus, we need to reduce the cost of the
motion information. To this end, we propose an approach
based on a scalable lossy coding of high-precision motion vec-
tors. It allows to optimize the trade-off between motion bit-
rate and wavelet coefficients bit-rate, strongly reduces the
motion cost, and thus, increases the coder performances at
low bit-rate.

Obviously, this lossy motion coding has an impact on the
decoded sequence. In this paper, we evaluate this impact by
establishing a theoretical distortion model for the motion cod-
ing error. This model will allow to realize an optimal model-
based bit-rate allocation between wavelet subbands and mo-
tion vectors. The experimental validation of the model gives
satisfactory results.

1. INTRODUCTION

In front of the explosion of the quantity and quality of vi-
sual data, video compression has been for a few years in full
expansion. Recently, the algorithms performances have con-
siderably increased, in particular with the latest standards,
like MPEG-4 [1] or H.264 [2].

Recent works showed that ¢t + 2D wavelet based video
coders [3], with motion-compensated temporal lifting scheme
[4], allow good scalability support [5] and almost reach the
performances of the hybrid coders [3, 6]. In order to further
increase the video coding efficiency at low bit-rate, it is nec-
essary to improve the motion vectors processing. This crucial
problem was explored in [7], [8]. Today, most of video coders
optimize the rate-distortion trade-off for a given rate, by vary-
ing for example the size of the blocks or the precision of the
estimates. But these methods are not well-adapted to low
rates, because the motion information becomes proportion-
ally more significant, and, besides, the scalability is difficult
to obtain for the motion.

In a recent work [9], we have shown that encoding in a
scalable way precise motion information with controlled losses
allows to reduce the motion cost with good coding perfor-
mances at low bit-rate. Moreover, it is possible to realize an
optimal bit-rate allocation between the motion information
and the wavelet coefficients. The approach of [9] consists in
estimating motion vectors with a very high precision, and
then in quantizing them by optimizing a rate / distortion cri-
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Fig. 1. General structure of the encoder (R. is the bit-rate
of the subbands, R, the one of the motion vectors and R; the
total bit-rate).

terion.

Obviously, the introduction of the loss on the motion have
an impact on the decoded sequence. In this paper, we pro-
pose to evaluate analytically this impact. To this purpose,
we establish a theoretical distortion model for the motion
coding error. Indeed, if we are able to model analytically
the distortion of the reconstructed sequence as a fucntion of
the quantization distortion introduced on the motion vectors
and the wavelet coefficients, it will be possible to realize a
model-based bit-rate allocation, with the main objective of
optimizing the trade-off between motion vectors bit-rate and
wavelet subbands bit-rate.

The general principle of our coder and the motion coding
approach are presented in section 2. The proposed model of
motion coding error is described in section 3. Finally, exper-
imental validation results are presented in section 4. Conclu-
sion and further works are presented in section 5.

2. LIFTED MCWT VIDEO CODING

We present in this section the motion-compensated wavelet
transform (MCWT) coder on which our work is based, and
we focus on the motion vectors coding method.

2.1. General principle

Fully scalable, our video encoder is based on a lifted motion-
compensated wavelet transform. The general structure is de-
scribed in the figure 1.

Motion compensation is essential for an efficient decorre-
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Fig. 2. Open-loop coding of motion vectors: the wavelet
subbands and the vectors are scalable. Motion bit-rate can
thus be perfectly adapted to the subbands bit-rate.

lation of the video sequences [3] and motion estimation is a
crucial problem in video compression. Nevertheless, a vectors
field of good quality can be very expensive in binary resources
compared to the wavelet coefficients.

2.2. Motion information coding

The cost of the motion vectors can be very significant, which
is not desirable, especially at low rate. The challenge is thus
to reduce this cost. For this purpose, the proposed method
uses a precise motion estimator and quantizes with loss the
vectors in order to reduce their cost, while controlling the
rate-distortion trade-off on the reconstructed sequence.

In order to remain fully scalable and to preserve the qual-
ity of the motion-compensated temporal filtering, we have
to encode the motion vectors in open-loop [9]: full-precision
vectors are thus used for motion compensation at the coder
(figure 2). Motion vectors are quantized using an uniform
scalar quantizer whose quantization step g controls the mo-
tion rate-distortion trade-off. Then, the quantized vectors are
encoded using the MQ-Coder of an EBCOT encoder [6] and
embedded in a JPEG2000-compliant bitstream.

At the decoder side, the bitstream is decoded using EBCOT
and the quantized decoded vectors are rescaled by the quan-
tization step gq. Then, the motion compensation and the in-
verse temporal wavelet transform are performed using the
quantized decoded vectors.

2.3. Bit-rate allocation algorithm

The quantization step ¢ controls the quantized motion vectors
rate R, and the distortion introduced by the motion coding.
Moreover, the subbands quantization at rate R. also intro-
duces an error on the reconstructed sequence.

In a general way, coding is optimal if the rate-distortion
points are located on the convex hull of the rate-distortion
curve. For this purpose, in our approach, we search empiri-
cally the best rate R,, i.e. the best quantization step ¢, which
minimizes the reconstruction Mean Square Error (MSE) for
a desired total rate Ry.

The rates distribution between the motion vectors and
the wavelet coefficients is thus done in an optimal way by the
following algorithm (the input-output distortion D is mea-
sured during optimization):
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Fig. 3. Performance comparison on the sequence “Foreman”.

Step 0: R, is given (total bit-rate)
Step 1: Find R; (by varying q) such that:

R, = arg min

Ry and R = Ry — Ry,

D(Ry)

Step 2: Compute R; = R, — R,
End

2.4. Efficiency of the method

This approach presents interesting performances on CIF and
on SD sequences. Figure 3 shows the results in terms of Peak
Signal Ratio (pSNR) as a function of the total rate R: for
the first 144 images of the sequence “Foreman”, with three
temporal decomposition levels using the (2,0) lifting scheme
(equivalent to a truncated 5/3 lifting scheme). The curve with
the triangular markers is obtained by applying the algorithm
proposed in section 2.3 for a quarter-pixel motion estimator.
We also present the curves obtained with a lossless coding
of the vectors estimated at pixel and quarter-pixel precisions.
At low rate, these curves show that quantizing motion vectors
of high precision allows to obtain better performances than
lossless motion coding.

3. MODELING OF THE MOTION VECTORS
QUANTIZATION NOISE

We have established a theoretical distortion model, for one
decomposition level, which describes the impact of the motion
vectors coding on the decoded sequence.

The motion quantization noise model is based on the
input-output distortion computation (MSE between signals
z and ). Its expression is given by:
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where N is the number of rows and M the number of columns
for one image of the sequence, and K the size of the sequence.
Introducing the signal power,

NM Zx"

and assuming that for one temporal wavelet decomposition
level, the first part of equation (1) is equal to zero for a (2,0)
lifting scheme, the distortion D can be written as:

Pn xk

X

1

1 -

— P — . 2
K 2 n (Top1 — Tok+1) (2)

D=

Let us establish some notations: in the following, we denote
by By the “Backward” quantized motion and Fj the “For-
We have: By = Q (Vik—i—1) =

Viok—1 and F, = Q(VkaJrl) = 0k~>k+17 with Q() the
quantization operator.

ward” quantized motion.

If we denote respectively z; "' = x4 (p + Biy1 (p)) and
xfk’l = z, (p+ Fr—1(p)) the “Backward” and “Forward”
motion-compensated pixels, the motion-compensated pixels
with the quantized motion vectors can be written as:

_B ~ = _Fy_ ~ =
Z, " = Zp(p+ Brt1(p)) and 7,* " = T (p+ Fr—1 (P))-
Let us remind the (2,0) lifting scheme analysis equations

on one decomposition level:

i (p) = T2k+1 (p) — %(;pfz’“*l + x52k+21)
{ Iy (p) = 21 (P) * . (3)

With quantized motion vectors, the synthesis equations are
given by:

{m() () W

Tars (b) = i (B) + 2@ + T

where Topt1 (p) represents the synthesized pixel with the
quantized motion vectors.

By using the first equation of system (3) and the second equa-
tion of system (4), and because the quantizer works in open-
loop, we can write the following relation:

1, B B
~ _ 2k+1 ~B2k+1
@211 (P) = Toka1 (P) = (@ 7 — T )
1, r P
= 2k+1 _ ~F2r41
+ 2(5”2k+2 Topis ) (5)
Let us assume that the reconstruction errors “Backward” eg =
Bag41  ~Barg1 « » _ Fopy1 ~Fopqa
Top T = Toy, and “Forward” ep = my 15 — Ty o due to

the motion quantization are decorrelated.
By combining the equations (2) and (5), we can write:
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with the scalar products for the “Backward” vectors defined
by (with similar notation for the “Forward” vectors):

} : Bok+1 ~B2k+1
M

Assuming that the image is stationary at time k, the

B2k+1 ~B2k+1 _
Lok Lok

scalar product becomes: <x23,f’““,fflf’““> = Ty (MBorsy ),
with I'y,, the autocorrelation function of the signal x2x and
NMBapy1 = Bag4+1 — Bagy1 the quantization error on the “Back-
ward” motion vectors (similar notations for the “Forward” mo-
tion).

If the motion quantization errors g, ; and nr,, ., are small
(asymptotical hypothesis or equivalently high bit-rate), we
have:

Pn(ap? ™) ~ Pn(#p") ~ Pn (v2:)

F. _F.
Pn(xmgi;l) ~ Pn(T 2351) ~ Pn (zok42).
Finally, the distortion D, which expresses the reconstruc-
tion error due to the motion quantization, can be simplified
as:

K
Z [Pn (z2k)

+Pn ($2k+2) -

Lo (n32k+1 )

F12k+2 (nF21«+1 )]

Moreover, if we suppose that the sequence is stationary in-
side one GOP and that the “Backward” and “Forward” motion
vectors are estimated symmetrically [10] (Bag+1 = —Fopt1),
we can write:

Pn (l’zk) ~ Pn ($2k+2)

Loy, (7732k+1 )~ | I (77F2k+1 )-
The distortion can therefore be simplified in:

K_1
1 2
D~ E Z [Pl’l (ka) - F»'C% (Usz+1)] (6)
k=0
i
~ ? [Pn (x2k+2) - F12k+2 (77F2k+1 )] (7)
k=0

These equations mean that the knowledge of images xax
and xar+2 over a GOP allows to estimate the distortion in-
troduced by the motion quantization. Indeed, this distortion
is simply function of the zop (or z2r+2) images power and
of the x2x (or Tap42) images autocorrelation function (which
depends of the motion quantization errors 7).

4. EXPERIMENTAL VALIDATION

To validate the proposed model, we compare the results ob-
tained experimentally for the input-output distortion with
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Fig. 4. Validation of the distortion theoretical model on the
sequences “Foreman” (a) and “City” (b).

q 2 3 1 5 6 7 8

Foreman 1.7 1.8 0.7 3.3 10.4 11 10.8

Rv (Kbps) | 46.7 | 33.3 | 32 | 25.9 | 22.7 | 225 | 22.3

City 7.6 1.6 6.3 1.4 14 1.6 0.7

Rv (Kbps) | 67.1 | 48.9 | 47.9 38 315 | 26.2 | 23.4

Table 1. Errors (in %) between the theoretical distortion
model and the experimentation for the sequences “Foreman”
and “City” for each motion quantization step ¢, with the cor-
responding motion bit-rates Rv in Kbps.

those obtained by applying the theoretical distortion formu-
las (6) or (7). In figure 4, we present the results for the
sequences “Foreman” (a) (144 first images) and “City” (b) (48
first images) on one decomposition level with a (2,0) lifting
scheme, where the pixelic motion vectors are coded with dif-
ferent quantization steps ¢ and where the wavelet subbands
are coded losslessly. These curves represent the distortion
D as a function of the quantization step q. Moreover, we
use Smoothing-B splines to model analytically the theoret-
ical curves. The errors in percentage between theory and
experimentation for each ¢ are summarized in table 1.
These results show that, for these two sequences, the the-
oretical and experimental curves are very close and follow the
same progression. We observe no more than 5 % of error on
average. Therefore, the theoretical distortion model for the
motion vectors coding error provides a good approximation.

5. CONCLUSION

We have presented in this paper a distortion model of mo-
tion coding error for video coders based on temporal motion-
compensated lifting scheme.

Indeed, we have already shown that it is necessary to
optimize the rate-distortion trade-off between motion infor-
mation and wavelet coefficients. To this end, we quantize
with losses motion vectors estimated with a high subpixelic
precision. This approach allows to improve the quality of the
reconstructed video sequence at low bit-rate.

We proposed a theoretical model to evaluate the impact
of the losses introduced by the motion information coding on
the decoded signal. Experimental validation is satisfactory.
The generalization to several temporal decomposition levels
and the introduction of the wavelet subbands quantization
noise will be included in a future work.

Our final objective is to realize an optimal model-based
bit-rate allocation between the wavelet subbands and the mo-
tion information: for a desired total bit-rate R, it will be
possible to find analytically which optimal rates to choose for
the motion vectors and the wavelet coefficients in order to
have a minimal distortion at decoding. This will decrease the
computational complexity of the bit-rate allocation at coding
and obviously improve the whole coder performances.
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