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ABSTRACT

Multiresolution representation of surface meshes is known to be

a powerful tool for modeling complex 3D objects. Among the ex-

isting schemes, normal meshes have proven to be very attractive for

multiresolution and wavelet coding. However, most of the coding

methods proposed in the literature are based on scalar quantization

despite that vector quantization is known to be more efficient. In

this work we propose a novel compression scheme based on a lattice

vector quantizer which exploits the correlation inside each geometry

subband in a multiresolution framework. Furthermore, we devel-

oped a model-based bit allocation algorithm able to work whatever

the quantizer is and especially with vector quantization. The pro-

posed scheme allows an improvement up to 1dB compared to the

best state-of-the-art method.

1. INTRODUCTION

In computer graphics applications, triangular meshes have proven

to be a powerful tool for the representation of 3D object surfaces.

The demand for realism in graphics applications is such that to-

day, 3D meshes can be defined by several millions of vertices, and

more [1]. A simple representation of these highly detailed meshes

becomes consequently huge and thus, interest has surged in recent

years for developing 3D compression systems. Compression is a

relevant solution to allow a compact storage or a fast transmission in

bandwidth-limited applications.

Basically, triangle meshes are composed by two components:

the vertex data and the connectivity between the vertices. The prob-

lem of connectivity compression has been well studied in the past

and today many existing methods achieve good connectivity com-

pression results [2]. Nowadays, more and more works consider the

original mesh to be just one instance of the surface geometry and

thus, consider the geometry to be the most important component

of a mesh. In the case of geometry compression, the connectivity

information is reduced to the minimum by remeshing the irregular

input mesh using semi-regular remeshers [3, 4]. Among the exist-

ing schemes of semi-regular remeshing, the normal meshes [5] are

attractive for wavelet coding, particularly with the unlifted butterfly

wavelet transform [6].

Several wavelet coders exploit the normal meshes combined with

the unlifted butterfly wavelet transform. Let us cite for example

the normal mesh compression (NMC) proposed by Khodakovsky

and Guskov based on a zerotree coder [6], the works of Lavu et al
on estimation-quantization for mesh compression (EQMC), that ex-

ploits the spatial and inter-scale correlations of the normal meshes [7]

and the works of Payan et al [8] optimizing the bit allocation across

the wavelet subbands.

This work has been supported in part by Alβan Office.

All of these works are basically based on scalar quantization

of the geometry. A recent work by Chou et al [9] was dedicated

to vector quantization (VQ) of the vertex positions of the original

irregular 3D object. VQ is a powerful tool extensively studied in

audio, image and video coding. The work of [9] showed that VQ

is also a promising tool for compressing the vertices of 3D triangle

meshes.

In this paper we propose the use of VQ for lossy compression

of geometry data in the framework of multiresolution analysis. Our

scheme is based on lattice vector quantization (LVQ) designed for

geometry coding of normal meshes and on optimal model-based bit

allocation across the wavelet coefficient subbands. LVQ has proven

to be a low complexity and robust method for vector quantization.

Furthermore, the proposed bit allocation solves the problem of the

estimation of rate-distortion functions and provides a simple and

powerful tool for allocating binary resources at low cost and what-

ever the quantizer is.

This paper is organized as follows. In section 2 we present the

overall proposed coding scheme. In section 3 we introduce LVQ and

its adaptation to normal meshes. Section 4 deals with the proposed

resource allocation and finally section 5 shows experimental results.

We conclude in section 6.

2. OVERALL CODING SCHEME

The structure used for coding normal mesh objects follows the con-

ventional transform-quantization-encoding paradigm. Fig. 1 presents

the global scheme of the proposed coder. The algorithm principle is

described hereinafter.

The normal remesher provides a semi-regular mesh, from the

irregular input one. Then, a N -level unlifted butterfly wavelet trans-

form [10, 11] is applied to obtain N subbands of three-dimensional

wavelet coefficients. Using this wavelet transform ensures that most

of the wavelet coefficients remains in the normal direction [6].

The quantization of each wavelet coefficient subband is ensured

by a LVQ of dimension n (in this work n = 3) scaled by a scaling

factor γ or equivalently a quantization step. Optimal quantization

steps are chosen by a model-based bit allocation process across the

different wavelet subbands (see section 4). To adapt the lattice to the

source, we chose to represent each lattice vector by a product code

depending on the statistic of the source to be quantized as proposed

by Fischer in [12]. Clearly, if the source is Laplacian the product

code consists of a prefix corresponding to the L1 norm of a vector

and the suffix to its position on the hyperpyramid with radius equal

to the correponding L1 norm.

The prefix and the suffix of each vector are then independently

encoded by a stack-run encoder followed by an arithmetic coder [13].

See Section 3.3 for more details.
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Fig. 1. Global coding scheme. The entropy coding box correspond to a stack-run coder followed by arithmetic coding.

The topology information is encoded using a connectivity coder

like [2].

3. LVQ FOR NORMAL MESH

In this section we describe the lattice vector quantization principle

and its adaptation to 3D normal remeshed objects.

3.1. Background

In data compression context, considerable attention has been given

to the quantization of generalized gaussian distributed vectors by

means of pyramidal or spherical lattice vector quantizer [12]. Such

quantization is performed to an integer lattice lying on a pyramidal

or spherical shell. A lattice Λ in R
n is composed of all integral com-

bination of a set of linearly independent vectors ai (the basis of the

lattice) such that:

Λ = {x|x = u1a1 + u2a2 + ...unan} (1)

where the ui are integers.

The fundamental advantage of lattice quantization is that no code-

book needs to be generated or stored and quantization is very fast

because it does not depend on the number of codewords used. Fur-

thermore, encoding can be done using a prefix code [12], which is

well suited to the regular structure of the lattice. The prefix code

decomposes a vector v into its p norm ‖v‖p and an index number I,

which is given by an algorithm of enumeration, such as [14].

Among the different lattices, the Zn is known to give the best

performance for low bit-rate quantization of generalized gaussian

sources when p is small [15]. This is due to the better adaptation

of the Zn voronoi regions to the anisotropicity of the generalized

gaussian sources probability density function (pdf), which is main

concentrated along with the coordinate axes [15]. This is exactly the

same context of the high frequency subband of a normal remeshed

object, which is often coded at low bit-rate (see Section 4.2)

In this work we use LVQ based on the Zn lattice, including

dead-zone.

3.2. Proposed LVQ for normal meshes

In the case of normal meshes, and when the wavelet coefficients are

expressed according to a system of local frames depending on the

coarser mesh, a lot of coefficients have indeed small tangential com-

ponents. Consequently, the most significant geometry information

lies in the normal components [5]. Therefore, in order to take into

account efficiently both normal and tangential informations we pro-

pose to adapt the LVQ structure.

Let us introduce an angular thresholding which defines a cone

of angle Θ with the normal. For all the vectors v located inside

this cone we force their tangential component to zero, as shown in

Fig. 2. The thresholded vector is now a vector of the form vin =
(0, 0, z). The vectors vout = (x, y, z) lying outside of the cone

remain unchanged.
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Fig. 2. Angular thresholding

This angular thresholding is implemented through an algorithm

which is proposed as follows:

1. if tan−1

 p
x2 + y2

|z|

!
< Θ

2. then, norm = z and index position = 0;

3. else, norm = ‖vout‖p and index position = I;

Instead of coding the norm of the vector lying inside the cone,

we actually code its normal component, and its index position is set

to zero. For vectors lying outside the cone, a classical product code

is used.

As a result, a non-null vector will present as many zeros as

we enlarge Θ, involving a small impact on the quality of the re-

constructed mesh, since small values of Θ are sufficient for a good

thresholding (see Section 5).

3.3. Stack-Run for prefix code

Stack-run [13] is a variable length coding method developed to deal

with integer numbers. These numbers are divided in two classes

of values: zeros and significant numbers. The significant values

(stacks) are coded directly into the binary form, using the symbols

‘0’ and ‘1’ for all bits, except for the most significant one, which is

substituted by the ‘-’ or ‘+’ symbols according to its sign. On the

other hand, the zeros are coded jointly into runs, where the number

of zeros of a run is written in binary form, using the symbols ‘-’ and

‘+’ instead of ‘0’ and ‘1’, respectively.

In our framework, we need to code two sequences of integer

numbers: one containing all the norms of the thresholded vectors
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and the other containing their corresponding indices. As said before,

the indices sequence presents an increasing number of zero values

according to the angular threshold Θ (great value of Θ involves high

number of zeros). In that case, the stack-run coder will be efficient.

Furthermore, the stack-run coder will also be efficient for the

sequence of norms, especially for high frequency subbands where a

lot of vectors will be quantized by zero (see Section 4.2).

Then, an arithmetic coder is used to encode the two different

sequences [13].

4. RESOURCE ALLOCATION

The overall coding procedure is performed independently for each

subband. Then, a resource allocation procedure is necessary in order

to distribute in an optimal way the amount of binary resources across

each subband, allowing the best choice of scaling factor γ to each

one. This allocation process is described in next sections.

4.1. Allocation principle

The coding process of each subband i requires an amount of Ri bits

per semi-regular vertex. The overall bit-rate R used to code the

entire object is computed as:

R =
MX

i=1

aiRi (2)

where ai is the fraction of the number of vertex in the i-th sub-

band and the total number of vertex of all M subbands. This to-

tal bit-rate should be smaller than a target value Rmax, imposed for

coding the quantized coefficients (from Fig. 1, Rmax is Rtarget −
Rconnectivity ). This means that:

MX
i=1

aiRi ≤ Rmax (3)

In this context, the rate allocation problem consists in finding R
minimizing the following distortion criterion:

D(R) =

NX
i=1

wiD(Ri) (4)

under the constraint given by (3). The weights wi take into account

the non orthogonality of the Butterfly wavelet filters [8]. To solve

this problem, we use a Lagrangian approach and introduce the fol-

lowing Lagrangian functional J(R, λ):

J(R, λ) =

MX
i=1

wiDi(Ri) − λ(

MX
i=1

aiRi − Rmax) (5)

By imposing the zero-gradient condition, we find that the re-

sulting optimal rate allocation vector R∗ = {R∗
i }M

i=1 verifies the

following set of equations:

wi

ai

∂Di

∂Ri
(R∗

i ) = λ ∀i ∈ {1, . . . , M} (6)

where λ is the Lagrange multiplier. We can read (6) this way: the

optimal rates correspond to points having the same slope on the

“weighted” curves (Ri,
wi
ai

Di). Note that λ < 0 since the RD curve

are strictly decreasing. A simple dichotomic search algorithm on λ
[16] is used to find the optimal rate R satisfying equations (6) and

(3).

4.2. Model for D(R) curves

The algorithm presented in section 4.1 not only requires the knowl-

edge of the RD curve of each subband, but also supposes that these

curves are differentiable, convex and accurate enough. The estima-

tion of the RD curves is thus a crucial step. We propose to use in

this paper the method prosed by [16]. This approach can be seen

as both data-driven and model-based. It combines the advantages of

algorithms based on RD curves analysis, and of model-based algo-

rithms. Indeed, for each subband we evaluate experimentally (R,D)

points located on the convex hull of the RD function and distributed

between an ad hoc range of bitrates1. Then, these real RD curves are

modeled using smoothing B-Splines [17] providing a continuous,

convex and differentiable analytical model for each RD function of

each subband (see a typical example in Fig. 3).
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Fig. 3. Modeling of a typical RD curve using smoothing B-Spline

5. EXPERIMENTAL RESULTS

In this section we evaluate the performance of the proposed coder.

We compare its results to the state-of-the-art coders, namely the Nor-

mal Mesh Coder (NMC) [6] and the Estimation-Quantization geom-

etry coder for normal meshes (EQMC) [7].

We use the Peak-Signal-to-Noise-Ratio (PSNR), given in deci-

bels (dB), to evaluate the performances of the proposed method. This

value is calculated as it follows:

PSNR = 20 log10

„
BB

dS

«
(7)

where BB represents the diagonal length of the bounding box of the

object and dS the surface-surface distance between the semi-regular

coded object and the original irregular one. Both parameters are

computed using the Mesh algorithm [18].

The figures 4 and 5 show results for the Venus and Horse nor-

mal remeshed objects2. In both case, the angular threshold Θ is set

to 1o (simulations show that it is a good value for all tested objects),

and codebooks are designed for Laplacian distribution. The pro-

posed encoder gives good compression results and a gain up to 1dB

in comparison with the two state-of-the-art methods.

1The range depends on the bandwith of the subband, i.e., for high fre-
quency subbands small bitrates will be allocated while for low frequency
subband high bitrates will be allocated.

2The Horse and Venus remeshed models are courtesy of Multi-Res Mod-
eling Group http://www.multires.caltech.edu
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Fig. 4. PSNR vs Rate curves for the proposed coder and the state-

of-the-art for Venus object
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Fig. 5. PSNR vs Rate curves for the proposed coder and the state-

of-the-art for Horse object

6. CONCLUSION

In this paper we have shown that LVQ associated to a stack-run

coder is promising for the compression of normal mesh objects. Fur-

thermore, the introduction of a model-based bitrate allocation using

spline is well suited to vector quantization. The experimental results

showed that combining optimal spline-based bit allocation and LVQ

gives good compression results with gain up to 1dB in comparison

with state-of-the-art methods.

In future works, we propose to design LQV for vectors with

higher dimension, by taking into account the spatial correlation be-

tween vertices.
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