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ABSTRACT

The present paper proposes a method that estimates a stereo
disparity map. The method consists of multilayered networks
of reaction-diffusion equations having activator and inhibitor
variables. A particular set of equations describes non-linear
oscillators coupled with diffusion processes, and governs a
disparity layer. Estimating a stereo disparity map requires
the two main constraints: the smoothness constraint and the
uniqueness. The activation process of the diffusion-coupled
oscillators performs the filling-in process for a stereo dispar-
ity map as the smoothness constraint. The mutual inhibi-
tion mechanism among the multilayered networks retains the
uniqueness constraint of the disparity at a particular pixel site.
By applying the proposed equations to cross-correlation func-
tions derived from stereo images, we obtain a self-organized
stereo disparity map. Experimental results show that the pro-
posed method is superior to a previous one, in particular, for
real stereo images.

1. INTRODUCTION

Estimating a disparity map from stereo images requires two
main constraints. One of them is the smoothness constraint
and the other is the uniqueness one. With the smoothness
constraint we assume that a stereo disparity map does not
have spatial discontinuities; with the the uniqueness one we
assume that a particular pixel site has only one disparity level.

Marr and Poggio proposed the above mentioned two con-
straints on a stereo disparity map, and also proposed a very
simple computational model that iteratively estimates a stereo
disparity map [1]. Their model consists of multilayered dis-
parity networks, each of which has ”cells” excitatory con-
nected in a spatial neighborhood and inhibitory connected
among the network layers. The excitatory connection works
as the filling-in process as the smoothness constraint, and
the inhibitory connection performs the uniqueness constraint.
They applied their model to artificially generated random-
dots stereo images, which was proposed by Julesz [2].

∗The present study was partly supported by the Grant-in-Aid for Scientific
Research of Japan.

We have proposed a model of grouping process on a visual
feature such as orientation of a short line [3]. The model con-
sists of multilayered networks of diffusion-coupled activation-
inhibition mechanism [4, 5]; each of the networks governs a
group of a visual feature. In our previous study, we simply ap-
plied our model of the grouping process to stereo images [6].
This trial application provides satisfactory results for random-
dots stereo images having only several disparity levels.

The present paper proposes a method that estimates a dis-
parity map from stereo images for the analysis of real stereo
images. The proposed method utilizes our previously pro-
posed model of the grouping process. For applying the model
of the grouping process to the problem of stereo disparity
estimation, we take account of the uniqueness constraint on
stereo disparity as well as the smoothness constraint. The
mutual inhibition mechanism developed here performs the
uniqueness constraint and the diffusion-coupled activation pro-
cess does the smoothness constraint. By utilizing the pro-
posed model and the previous one proposed by Marr and Pog-
gio, we analyzed random-dots stereo images having curved
surface and two kinds of real stereo images. The results of
the analysis show that the performance of the proposed model
is well, compared to the previous one, in particular, for real
stereo images.

2. PREVIOUS METHOD

Marr and Poggio proposed a model that estimates disparity
from stereo images [1]. They considered multilayered net-
works consisting of ”cells” located at particular pixel sites
(x, y). The state St(x, y, d) of a particular cell on a network
layer expresses existence or non-existence of a disparity level
d. Their following model is in the iterative form of St at the
tth step,

St+1(x, y, d) = σ

⎛
⎝∑

Ω+

St − ε
∑
Ω−

St + S0

⎞
⎠ , (1)

where S0 denotes the initial state and corresponds to the cross-
correlation function between the stereo images overlapped at
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the disparity level d. The function σ(s) denotes the switching
function that returns 1 if s ≥ θ and 0 if s < θ. The do-
main Ω+ refers to the excitatory spatial neighborhood having
M×M (pixel), and Ω− refers to the inhibitory neighborhood.
The summation

∑
Ω+

St performs the filling-in process for
the smoothness constraint; the summation

∑
Ω− St does the

uniqueness constraint due to the inhibitory mechanism, where
ε is an inhibitory constant.

3. PROPOSED METHOD

The following set of ordinary differential equations having
an activator variable u(t) and an inhibitor one v(t) describes
non-linear oscillation [4, 5].

u′ = f(u, v) =
1
ε

[u(1 − u)(u − a) − v]

v′ = g(u, v) = u − bv (2)

Equation 2 has two-stable equilibrium points, depending on
the constants a and b. The constant ε is 0 < ε � 1. A set
of solutions (u, v) = (0, 0) is one of the stable equilibrium
points. On the one hand, when we stimulate the variable u
at the stable equilibrium point by adding δu > a, according
to f(u, v) > 0, the variable u is rapidly increasing as time
proceeds. This is the activation process. On the other hand,
when we stimulate the variable u at (u, v) = (0, 0) by δu < a,
the variable u directory returns to the initial state of (u, v) =
(0, 0). Therefore, the parameter a works as a threshold value,
and the set of the equations works as the switching function
dividing initial states into two stable equilibrium points. [The
other stable equilibrium point is (u, v) � (1, 0).] In addition,
the large variable v inhibits the activation process. Thus, the
set of Eq.(2) has the activation-inhibition mechanism.

The following equations describe diffusion processes of
u(x, y, t) and v(x, y, t) in a 2-dimensional space.

∂tu = Du∇2u, ∂tv = Dv∇2v (3)

The constants Du and Dv are diffusion coefficients on u and
v, respectively. When a point in a 2-dimensional space has
a large value of u, compared to the surrounding regions, the
large value diffuses from the point into its neighborhood points
as time proceeds.

We have proposed the next set of reaction-diffusion equa-
tions combining the activation-inhibition mechanism described
in Eq.(2) with the diffusion processes of Eq.(3) [3, 6].

∂tun = Du∇2un + f(un, vn, unmax) + rC(x, y, d)
∂tvn = Dv∇2vn + g(un, vn) (4)

In the application of the proposed equations to stereo dispar-
ity estimation, the function C(x, y, d) corresponds to cross-
correlation functions derived from stereo images overlapped
at the horizontal shift d (pixel). Thus, we link the stereo dis-
parity level d with the nth network layer having the set of two

variables (un, vn). We denote the number of disparity levels
d or the number of network layers by Nd. When a state at a
pixel site in a 2-dimensional space becomes an activated state
having large value of u, the diffusion process on u causes the
activation processes around the neighborhood pixel sites. The
combination of the diffusion process and the activation one
realizes the filling-in process or the smoothness constraint in
a disparity layer.

For the uniqueness constraint of a stereo disparity at a par-
ticular pixel site, the present paper proposes the next mutual
inhibition mechanism among the multilayered networks.

a(unmax) =
1
4
[1 + tanh(unmax − a0)] × 1

2
[1 + tanh(|dn|)]

(5)
As mentioned above, the constant a in Eq.(2) works as a
threshold value for the activation process. Thus, we modulate
a according to the maximum value of un of other disparity
layers,

unmax = max
i∈N

ui, |dn| = |dn − argd(unmax)| , (6)

where dn denotes a disparity level governed in the nth layer
and N = {0, 1, · · · , n − 1, n + 1, · · · , Nd − 1}. When an-
other network layer becomes an activated state, that is, when
unmax is large, a becomes large. Thus, the state of the current
nth network layer having (un, vn) is inhibited, even if un is
rather large. However, we do not apply this mutual inhibition
mechanism to the neighboring network layers having simi-
lar disparity levels, since cross-correlation functions derived
from stereo images tend to have similar values among neigh-
boring network layers in real situations. Thus, the function
tanh(|dn|) in Eq.(5) weakens the mutual inhibition mecha-
nism, where |dn| refers to an absolute disparity difference be-
tween the layer having unmax and the current layer.

Figure 1 shows the flow chart of estimating a disparity
map from stereo images. First, we compute cross-correlation
functions C(x, y, d) between two stereo images overlapped
at a horizontal shift d. Then, we compute the temporal devel-
opments of the proposed model Eq.(4). Finally, we estimate
a stereo disparity map D(x, y, t) with the weighted sum of
un(x, y, t),

D(x, y, t) =
∑

n

dn × un(x, y, t)/
∑

n

un. (7)

In computing the partial differential equations of Eq.(4),
we converted the equations into the discretized form by the
finite difference method. Then, we solved the set of linear
equations with the Gauss-Seidel scheme. The finite differ-
ences in space and time were δx = δy = 0.2 and δt = 10−3.
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Fig. 1. Flow chart of the proposed method of disparity es-
timation from stereo images. A cross-correlator converts a
pair of stereo images into cross-correlation functions denoted
by C(x, y, d). These correlation functions are provided to
the proposed equations as the external stimuli in Eq.(4). As
time proceeds, particular layers of ud(x, y, t) and vd(x, y, t)
self-organize the domain of corresponding disparity levels.
The integration (weighted sum) of the variables ud(x, y, t)
provides a disparity map. The image size shown here is
300 × 300 (pixel). A rectangular domain for the computa-
tion of cross-correlation was 5 × 5 (pixel). A sphere locates
in the center of the random-dots stereo images. The disparity
levels was Nd = 5.

(a)

d=10 d=9 d=8 d=7 d=0

 0

 4

 8

 12

 0  50  100  150  200  250  300

True

Marr & Poggio

Proposed method

Horizontal position x(pixel)

Disparity D(x,y=150) (pixel)

(b)

Fig. 2. Experimental results for the random-dot stereo im-
ages (see Fig.1) having curved surface of a sphere in 3-
dimensional space. (a) Disparity map estimated by the previ-
ous method proposed by Marr and Poggio with the parameter
values of M = 5 (pixel), θ = 5.0 and ε = 2.0. (b) Compari-
son of 1-dimensional profiles of the stereo disparity maps es-
timated by the proposed model and the previous one of Marr
and Poggio. Figure 1 has the disparity map estimated by the
proposed method.

4. EXPERIMENTS

4.1. Random-dots stereo images

First, we applied the proposed method and the previous one
proposed by Marr and Poggio [1] to the artificially generated
random-dots stereo images [2] shown in Fig.1. The disparity
map estimated by the proposed model was shown in the last
row of Fig.1; that by the previous model was done in Fig.2(a).
In addition, Fig.2(b) shows 1-dimensional profiles of the dis-
parity maps along the center horizontal line. These results
show that the two methods work well for the random-dots
stereo images.

4.2. Real stereo images

We have two kinds of stereo image pairs, one of which repre-
sents four computers facing a camera as shown in Figs. 3(a)
and 3(b). The computers locate at different distances from the
camera. Thus, four different disparity levels must appear in a
horizontal line in a disparity map. Figures 3(c) and 3(d) show
two examples of cross-correlation functions derived from the
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Fig. 3. Experimental results for real stereo images represent-
ing four computers. (a) Left and (b) right images. Image size
is 400 × 200 (pixel). Brightness f was quantized into 256
levels. A rectangular domain for the computation of cross-
correlation was 5 × 5 (pixel). The number of disparity levels
is Nd = 30. (c) C(x, y, d = 50) and (d) C(x, y, d = 40).
(e) Disparity map D(x, y, t = 30) estimated by the proposed
method with the parameter values of Du = 1.0, Dv = 2.0,
a0 = 0.25, b = 20, ε = 1.0 × 10−2 and r = 2.55. (f) Dispar-
ity map estimated by the previous model proposed by Marr
and Poggio with the parameter values of M = 15 (pixel),
θ = 30 and ε = 10. (g) 1-dimensional profiles of the stereo
disparity maps estimated by the proposed method and the pre-
vious one at y = 100.
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Fig. 4. Experimental results for real stereo images represent-
ing a corridor in a building. (a) Left and (b) right images.
Image size is 400 × 300 (pixel). Brightness f was quan-
tized into 256 levels. A rectangular domain for the compu-
tation of cross-correlation was 5 × 5 (pixel). The number
of disparity levels is Nd = 46. (c) C(x, y, d = 20) and
(d) C(x, y, d = 30). (e) Disparity map D(x, y, t = 30) esti-
mated by the proposed method with the parameter values of
Du = 1.0, Dv = 2.0, a0 = 0.20, b = 10, ε = 3.0×10−2 and
r = 2.55. (f) Disparity map estimated by the previous model
proposed by Marr and Poggio with the parameter values of
M = 19 (pixel), θ = 30 and ε = 10. (g) 1-dimensional pro-
files of the stereo disparity estimated by the proposed method
and the previous one at y = 150.

stereo images. These functions were provided to the proposed
model and the previous one of Marr and Poggio. By compar-
ing the estimated two disparity maps shown in Figs. 3(e) and
3(f), we can recognize that both maps have well-estimated
similar global structure. Figure 3(g) shows the 1-dimensional
horizontal disparity profiles estimated by the two methods.
The proposed method clearly reconstructed the detailed dis-
parity structure of spatial gaps between two neighboring com-
putes, compared to the previous method. Thus, we confirmed
that the proposed method is much superior to the previous
one, in particular, in detailed structure.

The other pair of real stereo images represents a corridor
in a building as shown in Figs. 4(a) and 4(b). Disparity level
continuously changes along the center horizontal line and the
center vertical one on the image plane. Around the center of
the image plane the depth becomes the largest value or the
disparity becomes the smallest level. Cross-correlation func-

tions, two samples of which are shown in Figures 4(c) and
4(d), were provided to the proposed method and the previous
one. Figures 4(e) and 4(f) show the estimated disparity maps;
Fig. 4(g) shows a comparison between the two maps along
the center horizontal line. The disparity map estimated by the
previous method has the step-wise disparity levels. In com-
parison to that, the proposed method successfully estimated
continuous change on disparity level. The global structure
was also estimated well in both of the disparity maps.

5. CONCLUSIONS

The present paper proposed a method that estimates a dis-
parity map from stereo images. The method utilizes our pre-
viously proposed multilayered network model consisting of
reaction-diffusion equations [3, 6], which has activator and
inhibitor variables and describes non-linear oscillation. The
combination of the activation process and the diffusion one
within a network layer performs the filling-in process required
for the smoothness constraint. In addition, a mutual inhibition
mechanism among the multilayered networks has been devel-
oped in the present study. This mutual inhibition mechanism
realizes the uniqueness constraint through a model parameter
denoted by a [see Eq.(5)]. We applied the proposed method
and the previous one proposed by Marr and Poggio [1] to a
random-dots stereo image pair and two kinds of real ones.
As the results, we have confirmed that the proposed model is
much superior to the previous model, in particular, for the real
stereo images.
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