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ABSTRACT

In this paper we present a novel approach to 3-D human ac-
tion classification based on the analysis of volumetric data ob-
tained form the joint processing of video sequences acquired by
a multiple-camera system. The use of volumetric data makes the
system very robust and avoids problems related the typical hu-
man body self-occlusions and motion ambiguities, very common
in an independent camera-by-camera analysis. A Shape Descrip-
tor of human body is obtained in order to capture only posture-
dependent characteristics and its outputs at each time instant are
collected together in action feature matrices. The use of Dynamic
Time Warping approach for action template matching accounts for
possible temporal nonlinear distortions among different instances
of the same gesture and allows gesture classification.

1. INTRODUCTION

Gestures and actions are among the principal ways through which
a human being interacts with reality. A gesture is usually per-
formed to communicate something while an action is carried out
in order to achieve a material purpose. This distinction is merely
semantical as gestures and actions are both carried out perform-
ing sequences of body postures. The possibility of building an
automatic machine capable of receiving and classifying this type
of information has been one of the most fascinating spur for the
research community in recent years.

Potential applications of this type of research projects can be
easily found in the fields of automatic video surveillance systems,
human-computer gestural interaction researches, robot skill learn-
ing and in many others. Automatic recognition and classification
of suspicious movements and gaits [1] in sensitive areas is perhaps
one of the most important recent needs demanding for applications
at the cutting edge of human action recognition technology.

Despite the capability of the human brain to recognize pos-
tures only on the basis of image data, information on body joints
configuration is 3-D in nature. The natural way of dealing with
posture representation is, thus, in the 3-D environment [2]. In the
work presented in this paper we used a multi-camera input device
and a 3-D Visual-Hull reconstruction technique [3] to provide vol-
umetric information to the system. In this way, problems such as
viewpoint dependence, motion ambiguities and self-occlusions are
inherently solved before the body posture tracking stage.

Frame-by-frame 3-D representations of the scene in terms of
voxels (volumetric pixels) have been the input data from which
extracting posture-dependent features [4]. In the Sec. 2 we in-
troduce a new method for performing the tracking of body pos-

tures throughout an action sequence, mainly based on the dynamic
adaptation of the technique used by Cohen and Li [5] for static pos-
ture estimation. Through experimental sessions, we developed a
technique able to extract a posture-dependent signal, independent
from actor’s position, orientation, size and voxel-set resolution.

Once a suitable feature set representing body postures during
an action execution is computed, we apply a well-known Template
Matching technique in order to perform action sequence classifi-
cation (Sec. 3). It is possible to consider postures as the atoms
of gestures in the same way as phonemes are often considered the
bricks that form words. Exploiting the similarity with the speech
recognition problem, we used the Dynamic Time Warping (DTW)
procedure [6] to compute a distance metric suitable for perform-
ing action comparisons. The novelty of our DTW implementation
consists in the use of the Kullback-Leibler distance applied to pos-
ture descriptions as cost function. Experimental results, shown
through the use of “confusion matrices”, confirm the reliability of
our approach.

2. BODY POSTURE TRACKING FROM VOLUMETRIC
DATA

2.1. The shape of volumetric data

In order to perform a 3-D reconstruction procedure using sequence
frames from multiple views of the scene, the system has to distin-
guish the actor silhouette from the rest of the image. We used
a well-known method to perform this kind of segmentation: the
Chroma Keying. This procedure accounts for differences in
colour between the actor and the scene background. Once the
object silhouette is extracted for each view, the so called Visual-
Hull volumetric reconstruction of the scene shot by cameras is
computed frame-by-frame before any tracking procedure. In this
method, 3-D reconstruction is performed using the volume inter-
section approach, which recovers the volumetric description of
the object from multiple silhouettes by back projecting from each
viewpoint the corresponding silhouette for perspective projections
[3] (Fig. 1 left). The intersection volume is then sampled regularly
across the three dimensions in order to generate a volume made of
binary voxels (ON/OFF). Body posture tracking is then computed
directly on volumetric action sequence frames (Fig. 1 right).

2.2. Tracking postures using Shape Descriptor technique

The core of our body posture tracking procedure is based on the
method proposed by Cohen and Li in [5]. They used the Shape

II  501142440469X/06/$20.00 ©2006 IEEE ICASSP 2006



Fig. 1. Volumetric intersection. Example of voxel-set creation by
3D intersection of Visual Hulls projected from segmented edges.

Descriptor to compute features suitable for static posture recogni-
tion. Our purpose is slightly different because we need features to
perform classification of human actions. Thus, our shape descrip-
tion has to represent meaningfully not only body postures, but also
their frame-by-frame dynamic changes.

The procedure starts from a 3-D voxel-based representation
of the scene containing the human body volume. This is the data
on which we compute the shape description (Fig. 1). The second
step is the definition of a reference shape Θ consisting of a ver-
tically oriented cylinder. It is adapted to the actor’s height and its
axis passes through the body 3-D centroid (Fig. 2 (b)). The use of

(a) (b)

Fig. 2. Example of Shape Descriptor reference shape. In (a) the
body horizontal projection silhouette is used to adapt the base cir-
cle. In (b) it is shown the reference cylinder surface. Each voxel is
represented only by its center point.

the cylinder allows discriminating between different orientations
of the object (body) with respect to the horizontal plane. The base
of the adopted cylinder is the major circle inscribed inside the pro-
jection of the body ON-voxels on the horizontal plane (Fig. 2 (a)).
The main advantages of this choice will be explained later.

Once the reference shape surface is gauged on the current
voxel-set, we are able to apply the 3-D Shape Descriptor algo-
rithm: we sample the reference cylinder surface into a number S
of control points (ps, s ε {1, . . . , S}). S is a user-defined para-
meter chosen according to computational cost and representation
accuracy criteria.

For each control point ps:

• Define a spherical coordinates system (ρ, θ, ϕ) with ori-

gin fixed in the ps location where: 0 ≤ ρ ≤ ρmax,
0 ≤ θ ≤ π rad and 0 ≤ ϕ ≤ 2π. θ = 0 corre-
sponds to the vertical direction, ϕ = 0 is the direction of
the segment orthogonal to the cylinder axis passing through
ps and ρmax is a value higher than the maximum distance
of voxels from the control points.

• Sample uniformly the polar coordinates into parts, respec-
tively Sρ, Sθ and Sϕ. This way we obtain a set of coordi-
nate values {(ρi, θj , ϕk)}.

• Assign to ps a 3-D histogram fs initially represented by a
zero-valued matrix with Sρ × Sθ × Sϕ dimensions.

• For each elementary volume in spherical coordinates, de-
fined by a particular (ρi, θj , ϕk), count how many ON-
voxels are contained and store this number in the corre-
sponding histogram location fs(i, j, k).

3-D Shape Descriptor F (i, j, k) is obtained summing up the
corresponding values taken from all the histograms of the control
points and normalizing these quantities to the maximum value ob-
tained:

F (i, j, k) =
S�

s=1

fs(i, j, k)

maxi,j,k

��S
l=1 fl

�
i, j, k

��

The Shape Descriptor F (i, j, k) is invariant with respect to
body translations in the voxel-set cartesian frame of reference.
The reference cylinder, in fact, follows the body centroid move-
ments. Furthermore, the use of control points lying on the cylin-
drical surface allows invariance with respect to body rotations on
the cylinder axis. The particular procedure we used to adapt the
reference cylinder to the human body ensures an invariance with
respect to the body proportions of the actor who is performing
the posture. The final normalization of the Shape Descriptor val-
ues removes the proportional relation to how many pixels the body
volume is made up and possible effects due to different sizes of
volumes in spherical coordinates, derived from the use of different
reference cylinders.

After having computed the cylindrical surface, the cylinder
follows the motion of the body’s centroid but its size remains
unchanged for the rest of the sequence. This way we obtain an
harmonious variation of features throughout the motion. Follow-
ing the described method, we compute a Body Shape Descrip-
tor F (i, j, k) for each frame and the collection of all its values
(Sρ × Sθ × Sϕ values) in vectors (feature vectors) throughout a
sequence (feature matrix) is the data set that we use to represent a
gesture (six examples are shown in Fig. 3, where each action be-
gins and ends with the same standing up position, with arms hang-
ing on the hips). In our experiments, as suggested in [5], we sam-
pled each spherical coordinate ten times, obtaining feature vectors
with 1000 values.

3. ACTION TEMPLATE MATCHING

In order to evaluate the discriminatory abilities of the extracted
features we use one of the simplest template matching algorithms.
The DTW is a definition of a distance metric for measuring simi-
larity between a known reference pattern and a test pattern. This
method accounts for the non-linear distortions that could affect two
sequences of features. If we took two gestures, a direct compari-
son between two feature vectors at a given time would be clearly
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Fig. 3. Examples of feature matrices. The lower right axis cor-
responds to the frame index, while the left one is associated to
the feature index (a F (i, j, k) value). The upper two matrices
are instances of “POINTING AT” gestures, the middle ones are
two “CROUCHING DOWN” actions while the lower graphs cor-
respond to two “KICK” sequences.

impossible: this is mainly due to the different duration of the ges-
ture’s steps. It follows that the whole action length has to be con-
sidered (Fig. 3). Through DTW we are able to find optimal corre-
spondences between feature vectors of different matrices accord-
ing to an agreed cost function. In other words, we can compare
sequences of similar body postures in two actions independently
from their time extension.

3.1. Dynamic Time Warping

If we have a reference pattern, say ri, i = 0, · · · , I , and a test pat-
tern tj , j = 0, · · · , J , where, in the general situation, I �= J , we
can find a distance measure between the two sequences building
a 2D grid with points on respective axis assigned to their feature
vectors. Each node (i, j) is associated with a specific value of a
cost function c(i, j) measuring the “distance” between the respec-
tive elements of the strings, ri and tj . We are now looking for a
path through the grid from an initial node (i0, j0) to a final one
(iF , jF ) that minimize the overall cost C defined as:

C =
F�

k=0

c(ik, jk)

In order to obtain the optimal path with the overall minimum
cost, we apply the Bellman’s Optimality Principle [6]: for each
node of the grid (ik, jk) we only have to find a node (ik−1, jk−1),
from a list of possible predecessors, that leads to minimum cost:

Cmin(ik, jk) = min
ik−1,jk−1

[Cmin(ik−1, jk−1) +

+ c(ik, jk|ik−1, jk−1)]

Using this formula we can compute the so-called Minimum
Distance Grid (Fig. 4), in which every node is now associated to
the minimum cost from the initial node.

In this work we consider (i0, j0) = (0, 0) and (iF , jF ) =
(I, J), which means that we are searching for the optimal path
from the initial node to the node corresponding to final fea-
ture vectors of both sequences. Thus, Cmin(iF , jF ) repre-
sents the distance between the two sequences. We assume that
c(ik, jk|ik−1, jk−1) = c(ik, jk). {(ik − 1, jk), (ik − 1, jk −
1), (ik, jk − 1)} is the set of possible predecessors (ik−1, jk−1).

4. EXPERIMENTAL RESULTS

We tested the DTW-based distance metric with different instances,
performed differently by the same person or by another one, of
the three simple actions: “POINT AT”, “CROUCH DOWN” and
“KICK”. With the word “simple” we refer to actions that are not
repeated for a random number of times, therefore different in-
stances must contain corresponding feature vectors. This is the real
limit of this DTW-based template matching approach: we are able
to make a comparison between two feature matrices provided that
the pattern of feature vector values in a matrix, although stretched
or compressed in time, has the same order of subsequence with
respect to the one in the other matrix.

We have carried out the DTW procedure using two different
cost functions between feature vectors:

The Euclidian distance : c(ik, jk) = ‖xik − yjk‖
The Kullback-Leibler distance : c(ik, jk) = KL(xik ,yjk)

We applied K-L distance to compute the cost function between
two feature vectors, x and y, formed by posture-dependent Shape
Descriptor values, using this formula:

KL(x,y) =
1

2

#�
l=1

(xl − yl) ln

�
xl

yl

�

where # = Sρ × Sθ × Sϕ = 1000 in our case.

(a) (b)

Fig. 4. Example of DTW minimum distance grid and optimal path
computed using Euclidian distance (a) and K-L distance metric (b)
between feature vectors. The minimum distance grid and the over-
all optimal path (the one across the valley) are computed between
the two “KICK” feature matrices of Fig. 3.
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An example of minimum distance grid, with the corresponding
path leading to minimum overall cost, between the two “KICK”
matrices of Fig. 3 computed using Euclidian norm can be found
in Fig. 4 (a), while in Fig. 4 (b) the same grid is obtained using
the K-L distance. The minimum distance grid computed using the
Euclidian norm has less steep slopes that the one computed with
K-L distances. This behaviour is due to the K-L computation: it
has more discriminating power between Shape Descriptors corre-
sponding to different postures, while retaining the same closeness
for Shape Descriptors representing the same posture. Thus, when
we compute the minimum cost paths from (0, 0) to any (i, j), and
the Shape Descriptors compared are different, the minimum cost
raises in a few steps: this creates the steep slopes. Using Euclidian
norm all the costs associated to the nodes are lower and the dis-
tance computed between Shape Descriptors raises more slowly as
their difference increases.

The first example of DTW-computed distances between se-
quences of actions can be seen through a plot of the so called con-
fusion matrix. This is a matrix in which each element (n, m) has
the DTW-computed distance value (Cmin(iF , jF )) from the se-
quence n to the sequence m.

(a) (b)

Fig. 5. Confusion matrix computed using DTW procedure with
Euclidian distance (a) and with K-L distance metric (b) between
feature vectors. These are distances among 11 sequences: {1, 2,
3, 4, 5} = “POINT AT”; {6, 7} = “CROUCH DOWN”; {8, 9, 10,
11} = “KICK”. The distance values correspond to the black-white
scale on the side.

In Fig. 5 (a) there is a confusion matrix computed using
Euclidian norm as feature vectors cost function. Elements from 1
to 3 correspond to “POINT AT” actions: we can see that the min-
imum distances between each one of these sequences and another
one (notice that the distance of a sequence from itself is zero, hence
the black main diagonal) are concentrated inside the “POINT AT”
cluster (3 × 3 dark upper-left sub-matrix). Sequences 4 and 5 are
two more “POINT AT” sequences, this time performed by another
person. It is noticeable that these “POINT AT” sequences tend to
fall outside clusters boundaries. More precisely, the fourth action
has the same distance (fourth white-light grey column or row) from
each of the others and the fifth seems to be closer to “KICK” in-
stances. The farthest ones from these sequences are the “CROUCH
DOWN” actions (white and light grey columns or rows) while the
“KICK” gestures are a bit closer (grey sub-matrices). The same
behavior is underlined by the other two clusters represented by
the elements 6, 7 for “CROUCH DOWN” action (note the central
dark square) and the elements from 8 to 11 for “KICK”(lower-
right corner square). Sequences 10 and 11 are related to another
actor: the eleventh is closer to the other “KICK” sequences but
it is even very close to “POINT AT” actions. An explanation of

the above described phenomena could be twofold: the adaptive
technique performed on the reference shape (in order to make the
features person-independent) could still be non optimal, and, at the
same time, each actor could probably perform the same action in a
dramatically different fashion.

All the problems highlighted by the confusion matrix of Fig. 5
(a) are solved using Kullback-Leibler distance when computing
the minimum distance grids. The results are shown in Fig. 5 (b).
Using K-L, the distances between realizations of different gestures
increase with respect to the one between sequences with the same
action. The dark upper 5 × 5 matrix, corresponding to the five
“POINT AT” sequences, forms now a well defined cluster, with
evident boundaries. The first three sequences form a black sub-
matrix showing their closeness. The fourth “POINT AT” real-
ization has always farther distances with respect to the other se-
quences in the “POINT AT” cluster, but now the lowest values
are inside the cluster boundaries. The fourth “KICK” sequence
has now an highest difference between distances from the “POINT
AT” realizations and distances from the other “KICK” actions.

5. SUMMARY AND CONCLUSIONS

In this paper we proposed an action-clustering system based on
volumetric 3D data. The performance shown by the experiments
have highlighted the abilities of this system based on Shape De-
scriptor not only to recognize postures, as shown in [5], but also
to be tuned up in a dynamic context. The simulations that have
been carried out demonstrated the ability of the proposed method
in classifying the different considered actions. The K-L distance in
the DTW context has proved its capability of being a suitable dis-
tance metric between posture-dependent Shape Descriptor outputs.
Moreover, the Shape Descriptor algorithm can be parallelized and,
in our opinion, after an optimization procedure, it will reach real-
time performance.
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