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ABSTRACT
One of the key problems in computer vision is the recov-
ery of epipolar geometry constraints between different camera
views. The majority of existing techniques rely on point cor-
respondences, which are typically perturbed by mismatches
and noise, hence limiting the accuracy of these techniques.
To overcome these limitations, we propose a novel approach
that estimates epipolar geometry constraints based on a statis-
tical model in the RADON domain. The method requires no
correspondences, explicit constraints on the data or assump-
tions regarding the scene structure. Results are presented on
both synthetic and real data that show the method’s robustness
to noise and outliers.

1. INTRODUCTION

A basic step in scene analysis from multiple views is to re-
cover the epipolar geometry of an imaging system. The fun-
damental matrix encapsulates the epipolar geometry and is
used in many computer vision tasks, such as scene recon-
struction [1], image rectification [1] and stereo matching [2].
Various methods have been proposed that estimate the fun-
damental matrix from point correspondences [1]. However,
determining correspondences is still an open problem. In par-
ticular, matching algorithms often fail to generate correct cor-
respondences due to large motions, occlusions or ambiguities.

Correspondence outliers are known to severely degrade
the accuracy of the conventional methods used to estimate
the fundamental matrix [3]. While robust methods such as
RANSAC [1] are able to reduce these problems by rejecting
outliers, they also eliminate valid features and therefore yield
incomplete feature models for reconstructing 3D scenes [4].

Various efforts have been undertaken to avoid correspon-
dence in Structure and Motion. The largest class among them,
direct methods [5,6], are based on the brightness change con-
straint equation proposed in [7]. However, this constraint as-
sumes small interframe motions, sufficient texturing of sur-
faces, and sufficiently slow variations in the lighting condi-
tions [5]. Other techniques that avoid correspondences rely on
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scene decomposition, additional geometric constraints or as-
sumptions about the image behavior [8–10], which typically
restricts the generality of the approaches. In [4], the use of
the Expectation-Maximization (EM) algorithm is proposed to
iteratively estimate structure and motion without correspon-
dences. It is acknowledged that the EM algorithm can con-
verge to a local minimum.

In this paper, a novel approach is presented that estimates
the epipolar geometry directly from two sets of features with-
out any prior information on point correspondences and with-
out enforcing explicit constraints on the data or making as-
sumptions about the scene structure. The two sets of features
are 2D orthographic projections of a set of 3D object fea-
tures from different viewpoints. The estimation problem is
statistically modelled in the RADON domain and leads to the
maximization of a three-dimensional cost function. This cost
function reflects the similarities between probability density
functions in the RADON domains of the two feature spaces.
A main advantage of this approach is shown to be its high
robustness to noise and outliers in the feature data.

Section 2 outlines the principle of the proposed approach.
An algorithmic overview will be proposed in Section 3. Sec-
tion 4 presents an experimental evaluation on both synthetic
and real data. Finally, conclusions are presented in Section 5.

2. STATISTICAL MODEL IN THE RADON DOMAIN

2.1. Epipolar Geometry in the Radon domain

Let us consider a 3D scene which is represented by a set S3

of N 3D feature points. S3 is then projected onto the view-
ing planes of two orthographic cameras in general positions,
resulting in two sets of 2D feature points S2 and S′

2 respec-
tively. We showed in [11] how the 3D/2D feature sets can be
mathematically represented as superpositions of Dirac func-
tions at the appropriate feature locations. The appropriate
mathematical derivations were based on the theoretical as-
sumption that all 3D feature points P3 ∈ S3 are visible in
both camera views, i.e. all corresponding 2D feature points
P2 ∈ S2 and P ′

2 ∈ S′
2. In our theoretical model, the locations

of the 2D features in S2 and S′
2 are precise, i.e. unaffected by

distortions such as noise and outliers. Under these ideal as-
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sumptions, each feature point P2 = (x, y)T ∈ S2 must have
a correspondence P ′

2 = (x′, y′)T ∈ S′
2 that lies precisely on

the corresponding ideal epipolar line in the second view. An
analogous relationship holds in the reverse direction. Under
orthographic projection, all epipolar lines are parallel [11] and
can thus be denoted as:

cos(α′)x′ + sin(α′) y′ = cos(α)x + sin(α) y + λ, (1)

where (x, y)T are the coordinates of the features in the first
view, (x′, y′)T the corresponding feature coordinates in the
second view, α and α′ denote the angles perpendicular to the
epipolar lines in the first and second view respectively and λ
represents the displacement.

Thus, if we model S2 by a suitable function f2(x, y) and S′
2

by an analogous function f ′
2(x

′, y′) respectively, the integrals
of f2(x, y) along an epipolar line in the first view and f ′

2(x, y)
along the corresponding epipolar line in the second view must
be identical. This relationship follows from the energy con-
servation along corresponding epipolar lines. Following the
notation in [12], it can be expressed by the following equa-
tion in the RADON domain:

f̌2(p, ξα) = f̌ ′
2(p + λ, ξα′) (2)

where f̌2(p, ξα) and f̌ ′
2(p, ξα′) denote the RADON transforms

of f2(x, y) and f ′
2(x, y) and ξα and ξα′ represent unit vectors

at angles α and α′ respectively.
We showed in [11] how f2(x, y) and f ′

2(x
′, y′) can be ex-

pressed as superpositions of Dirac functions at the appropri-
ate feature locations. In this case, the constraint in (2) would
be met under the ideal assumptions stated above. In practice
however, feature location data is inevitably subject to distor-
tions such as noise and outliers which led us to the introduc-
tion of a statistical model.

2.2. Statistically modelling feature location uncertainty

Let us assume two 2D sets of N (non-ideal) feature points S2

and S′
2 corresponding to the first and second camera view re-

spectively. We model S2 and S′
2 with the functions f2(x, y)

and f ′
2(x, y) respectively, where f2(x, y) and f ′

2(x, y) are de-
fined as the superpositions of 2D Gaussian functions scaled
by the factor 1/N . The 2D Gaussians reflect statistical inde-
pendence in x- and y- coordinates, share a common standard
deviation σ and are centered at the appropriate feature loca-
tions:

f2(x, y) =
1

2πσ2N

N∑
k=1

e−
1

2σ2 [(x−xk)2+(y−yk)2] (3)

f ′
2(x, y) =

1
2πσ2N

N∑
k=1

e−
1

2σ2 [(x−x′
k)2+(y−y′

k)2], (4)

where (xk, yk) and (x′
k, y′

k) are the feature coordinates in the
first and second camera view respectively. It follows from (3)

and (4) that∫∫ ∞

−∞
f2(x, y) dxdy =

∫∫ ∞

−∞
f ′
2(x, y) dxdy = 1. (5)

The functions f2(x, y) and f ′
2(x, y) can be interpreted as prob-

ability density functions (PDFs), representing the likelihood
that any individual location (x, y) is statistically “covered” by
the entity of all feature points of the respective image under a
Gaussian noise model.

Now, evaluating the RADON transforms f̌2(p, ξα̂) and
f̌ ′
2(p, ξα̂′) of f2(x, y) and f ′

2(x, y) at arbitrary angles α̂ and α̂′

eliminates one of the two dimensions of the underlying Gaus-
sian kernel and therefore results in a superposition of 1D
Gaussian functions. This effect is due to the circularly sym-
metric nature of the 2D-Gaussian function and is depicted
in Figure 1 for the first camera view (S2). In this Figure,
the circles represent the Gaussian kernels centered at the fea-
ture locations (S2 = {P1, P2, P3} in this example). Ac-
cording to (3), f2(x, y) is the superposition of these Gaus-
sians. Thus, f̌2(p, ξα̂) and f̌ ′

2(p, ξα̂′) can be directly evaluated
by first projecting the (distorted) locations of the features in
S2 and S′

2 onto the lines intersecting the origins at angles α̂
and α̂′ respectively and subsequently calculating the super-
positions of 1D-Gaussians centered at the projected feature
locations (Figure 1).
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Fig. 1. Probability density function f2(x, y) and RADON

transform f̌2(p, ξα̂) for a set of three features. The RADON

integration lines run perpendicular to the line l that intersects
the origin at angle α̂.

The resulting RADON transforms implicitly bear the fol-
lowing statistical interpretation: Let us consider the two
RADON transforms f̌2(p, ξα̂) and f̌ ′

2(p, ξα̂′) at arbitrary but
fixed angles α̂ and α̂′, resulting in the two 1D functions f̌2(p)
and f̌ ′

2(p). Let us further define two lines l and l′ that run
through the origin of the coordinate system at angles α̂ and α̂′

respectively. The functions f̌2(p) and f̌ ′
2(p) express the sta-

tistical probabilities q(p) and q′(p) that any point P that lies
on l or l′ respectively at distance p from the origin results
from the projection of the respective 2D feature entity (S2 or
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S′
2) onto this line. This relationship can be derived based on

conditional probabilities.

2.3. Cost function

Despite the practical presence of distortions in the feature
data, the similarity between the two RADON transforms
f̌2(p, ξα̂) and f̌ ′

2(p + λ, ξα̂′) is expected to reach its maxi-
mum when the two functions are evaluated in the proximity of
the parameter triplet (α, α′, λ) that satisfies the epipolar con-
straint in (2). Thus, the extraction of the epipolar geometry
comes down to the maximization of a suitable similarity mea-
sure in a three-dimensional parameter space. In the current
implementation, the cost function is the maximum of the nor-
malized cross-correlation between f̌2(p, ξα̂) and f̌ ′

2(p, ξα̂′) in
the p-dimension. This cost function is expected to reach its
maximum value at α̂ = α and α̂′ = α′, i.e. when the max-
imum similarity is expected between the two corresponding
1D PDFs q(p) and q′(p).

3. ALGORITHMIC OVERVIEW

The algorithm proceeds as follows:

1. A coarse search is performed over the cost function de-
scribed in Section 2.3 for a set of discrete angles αk, α′

k.
This search yields the angle pair (α̂s, α̂

′
s).

2. Using (α̂s, α̂
′
s) as the initial values, a Levenberg-

Marquardt search over the cost function yields the final
estimates (α̂, α̂′).

3. The index at which the normalized cross-correlation in
the cost function at angles (α̂, α̂′) reaches its maximum
determines the final estimate of the displacement λ̂.

4. Based on the estimates (α̂, α̂′, λ̂), the epipolar geome-
try can be recovered using (1).

4. EXPERIMENTAL RESULTS

4.1. Experiments on synthetic data

Multiple sets S3 of 3D-features were synthetically generated,
where the feature number N = 100. The feature points of S3

were subject to three different types of 3D scene transforma-
tions to generate the appropriate feature sets S2 and S′

2. The
transformations are characterized by the azimuth φ (rotation
about y-axis), the elevation θ (rotation about x-axis) and the
translations x0 and y0 in x- and y-directions respectively:

• Type 1: φ = 5◦, θ = 2◦, x0 = 7, y0 = 8;

• Type 2: φ = 20◦, θ = 10◦, x0 = 10, y0 = 10;

• Type 3: φ = 45◦, θ = 20◦, x0 = 15, y0 = 10.

For each transformation type, various percentages of feature
outliers were generated ([0, 1, 2, 4, 8, 16, 32, 48]%), i.e. an ap-
propriate number of features of S′

2 were randomly displaced
within a maximum disparity range according to a uniform
distribution. To additionally simulate location noise, the co-
ordinates of all features of S2 and S′

2 were rounded to in-
teger values. For each transformation type and outlier per-
centage, 100 independent tests were performed to ensure the
statistical reliability of the results. In each test, new feature
sets S2 and S′

2 were synthetically generated and passed to
both RANSAC [1] and the proposed Statistical RADON Ap-
proach (SRA). Performance measures were obtained for both
methods by comparing the estimated and ideal fundamental
matrices based on a scheme proposed in [3]. These measures
represent the Mean Distances (MDS) in pixels between points
on the ideal and estimated epipolar lines. Finally, the MDS

were averaged over the 100 tests. Figure 2 depicts the av-
eraged MDS of both estimation methods for all three trans-
formation types against the outlier percentage. Due to the
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Fig. 2. Trends of the estimation errors of RANSAC and the
proposed SRA based on synthetically generated features.

lack of a feature matching step during the generation of the
data, the evaluation is biased in favour of RANSAC. The
aim of the synthetic evaluation is to investigate the trends of
the methods with respect to the outlier percentage. It can be
seen from Figure 2 that both estimation methods show very
similar trends and the discrepancy between the MDS is small
(< 1 pixel). For small transformations and high outlier per-
centages, the proposed approach showed even smaller MDS

than RANSAC. This confirms the high robustness of the pro-
posed approach with respect to noise and outliers.

4.2. Experiments on real images

Features were automatically extracted with a HARRIS corner
detector from neighbouring camera images of an image se-
quence used previously [4]. The eleven images of the se-
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quence were taken of a rotating cube with a telephoto lens and
hence can be considered as orthographic projections. For each
of the ten neighbouring image pairs, MDS were computed
for the Linear Raw Method (LRM), RANSAC [1] and the
proposed Statistical RADON Approach (SRA) as described
in Section 4.1. LRM is an adjustment of the 8-point algo-
rithm [1] to the orthographic projection case. The MDS were
averaged over all image pairs. Figure 3 shows both the means
and the standard deviations of the MDS. It can be seen from
Figure 3 that the proposed approach yields the smallest es-
timation error, despite its advantage of not requiring corre-
spondence data. Figure 4 depicts neighbouring cube images
from the sequence. Since the motion within the sequence is
a rotation about the vertical axis, all epipolar lines should be
horizontal. It can be seen from Figure 4 that the epipolar lines
from SRA are more accurate than the lines from RANSAC.
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Fig. 3. Means and standard deviations of the MDS for three
estimation methods based on ten cube image pairs.

Fig. 4. Cube image pair with epipolar lines from RANSAC
(dashed lines) and the proposed SRA (solid lines).

5. CONCLUSIONS AND FUTURE WORK

In this paper, a statistical approach was presented to recover
robustly the epipolar geometry from two sets of sparse fea-
tures under an orthographic camera model. The method op-
erates in the RADON domain and does not require any cor-
respondence information. This constitutes a major advan-
tage over conventional methods, since establishing correspon-
dences is difficult in practice. The method showed to be ex-
tremely robust towards noise and outliers in the feature data.

One of the future aims is to further increase the overall

robustness by automatically detecting and discarding outliers.
Additional goals include the use of this method for feature
matching and its extension to perspective projections.
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