
PROGRESSIVE TRANSMISSION OF POINTTEXTURE 3-D IMAGES

In-Wook Song, Sang-Uk Lee �

Signal Processing Lab
EECS, Seoul National University.

Chang-Su Kim

Media Communication Lab
ECE, Korea University.

ABSTRACT

A progressive compression and transmission algorithm for Point-
Texture 3-D images is proposed in this work. The proposed algo-
rithm represents a PointTexture image hierarchically using an oc-
tree. The geometry information in octree nodes is encoded by the
predictive partial matching (PPM) method, while the color infor-
mation is encoded using the discrete cosine transform (DCT). The
encoder achieves the progressive transmission of the 3-D image by
transmitting the octree nodes in a top-down manner. We develop a
transmission scheme, based on the rate-distortion (R-D) optimiza-
tion in order to maximize the image quality subject to a given bit
budget. Extensive simulation results demonstrate that the proposed
algorithm is an efficient method for progressive transmission of 3-D
data.

1. INTRODUCTION

Three-dimensional (3-D) data are widely used in various applica-
tions, such as virtual reality, video game and animation. Among var-
ious representation tools, the mesh representation has been a dom-
inant method to represent 3-D data. However, photo-realistic 3-D
meshes require a huge amount of storage space in general, and their
distribution over digital communication channels is limited by the
available bandwidth. Thus, it has drawn a lot of attention to de-
velop alternative 3-D representation methods, which are more effi-
cient than the mesh representation [1, 2, 3].

Depth image-based representation (DIBR) is a new approach to
represent and render 3-D objects with complex geometries [1]. It
is related to both the volume representation [2] and the point repre-
sentation [3]. Instead of representing objects with polygonal meshes,
DIBR represents a 3-D object with a set of reference images covering
its visible surface. Each reference image comes with a depth map,
which is an array of distances from the pixels in the image plane to
the object surface. Shade et al. [4] proposed a DIBR method, called
layered depth image (LDI). An LDI has a single reference image,
but its each pixel can represent multiple points along each line of
sight. Chang et al. [5] investigated a hierarchical representation of
3-D objects based on the LDI method.

DIBR has been adopted into MPEG-4 Animation Framework
eXtension (AFX) [1, 6]. It has three formats: SimpleTexture, Point-
Texture, and OctreeImage. Among them, PointTexture is similar to
LDI and has several advantages over the traditional mesh represen-
tation. For example, PointTexture can represent photo-realistic 3D
objects without complex mesh structures. Also, its rendering com-
plexity depends only on the image resolution, regardless of the object
complexity. To render a PointTexture image, each point is simply
drawn as a circular disk with its own color [1]. Thus, the rendering of

�This work was supported partly by Samsung Advanced Institute of Tech-
nology and partly by a Korea University Grant.

(a) (b)

Fig. 1. An example of PointTexture: (a) virtual rays and (b) layers.

PointTexture images is faster than that of triangular meshes in gen-
eral. However, complex PointTexture images require a large amount
of data and their compression should be performed efficiently. In
this work, we propose a novel algorithm to compress PointTexture
images progressively. An octree structure is employed to represent
PointTexture images hierarchically.

The proposed algorithm encodes the geometry information in
the octree nodes using the predictive partial matching (PPM) scheme
[7], which employs preceding data as a context to exploit the corre-
lation in 3-D shapes. Also, the proposed algorithm encodes the color
information based on the discrete cosine transform (DCT). The pro-
posed algorithm supports flexible transmission of PointTexture im-
ages. Specifically, we illustrate a progressive transmission scheme,
based on the rate-distortion (R-D) optimization.

This paper is organized as follows. Section 2 briefly reviews
the formats and data structures of PointTexture images. Section 3
describes the octree generation algorithm. Sections 4 proposes the
compression algorithm for node data, and Section 5 develops two
adaptive transmission schemes for node data. Section 6 provides
simulation results. Finally, conclusions are drawn in Section 7.

2. POINTTEXTURE IMAGES

There are various methods to represent and render depth images
or images with depth information, for example, [4, 5, 8]. DIBR
has been developed to standardize such representation methods and
adopted into MPEG-4 Part 16: Animation Framework eXtension
(AFX) [1, 6]. It has three main formats: SimpleTexture, PointTex-
ture and OctreeImage. Note that SimpleTexture and PointTexture,
respectively, are similar to ‘sprite with depth’ and LDI in [4].

PointTexture is a powerful data structure. It records the infor-
mation viewed from a single camera position but allows more than
one pixels along each line of sight. Each pixel has a depth value and
��� �� �� components. As shown in Fig. 1(a), each virtual ray inter-
sects the object at multiple points, which are ordered from front to
back. For example, there are five intersecting points for ray PA and
four intersecting points for ray PB. The first intersecting points of
all rays constitute the first layer, the second intersecting points con-

II 485142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

stitute the second layer, and so on. Fig. 1(b) illustrates those layers.
From the original camera position, only the pixels in the first layer
are visible. However, as a viewer moves away from the original po-
sition, the rendering system can expose back layer pixels, yielding
realistic parallax.

3. HIERARCHICAL REPRESENTATION OF
POINTTEXTURE IMAGES

In this section, we describe how to convert a PointTexture image
into octree-based hierarchical data, which represent the 3-D image
at multiple levels of details.

First, a PointTexture image is converted into volume data [2],
where objects and empty regions are represented by ‘1’ and ‘0’ vox-
els, respectively. Then, the volume data are represented by an octree.
Note that the octree is used as an intermediate data structure to im-
prove the compression performance for PointTexture images. It is
not related to OctreeImage, which is another format of DIBR.

3.1. Octree Generation

The volume data is expressed by an octree, whose each node is clas-
sified into one of the four categories. First, if the bounding volume
contains an object, the root node is labeled with ‘S’ and the volume
is subdivided into eight equal size volumes. If a subdivided volume
contains only black voxels or only white voxels, the corresponding
node is labeled with ‘B’ or ‘W,’ respectively. Otherwise, the node
is set to ‘S’ and the volume is further subdivided into eight smaller
volumes. Each color component of an S or B node is set to the aver-
age of the corresponding color components of all descendant black
voxels.

This subdivision procedure can be repeated until the tree reaches
the predefined maximum depth. Otherwise, the number of nodes in
the tree can be too large and the compression performance of the
proposed algorithm can be degraded. At the maximum depth, if a
node contains both black and white voxels, it is labeled with ‘P’ and
its voxel values are encoded by the PPM method. The PPM method
will be described in detail in Section 4.2.

3.2. Progressive Transmission

We achieve the progressive transmission of a 3-D PointTexture im-
age by transmitting the octree nodes in a top-down manner. A node
can be transmitted only if its parent node has been already transmit-
ted. Suppose that a leaf node in a partially transmitted octree is an
S node. Then, it is temporally labeled as a B node, i.e., all its voxel
values are approximated to be black. Therefore, a node is defined
to be transmittable if it is a leaf B node. At each time instance, the
encoder selects one node among the set of transmittable nodes and
then transmits its information.

4. COMPRESSION OF NODE DATA

The encoder uses an ordered list to maintain the set of transmittable
nodes. At each time instance, the encoder selects a node from the
list adaptively according to the requirements of applications, as will
be described in Section 5, and then transmits its information to the
decoder.

Fig. 2 shows the node data structure, which consists of header
information and detailed information bits (DIB). The header infor-
mation is composed of POSITION and T data. POSITION indicates
the order of the current node in the list of transmittable nodes. Based

POSITION T DIB (detailed information bits)

Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8If 'S'

PPM BitsIf 'P'

Header Information{
Fig. 2. Data structure for a node

on this information, the decoder can know which black node should
be split or PPM-decoded. If there is only a single transmittable node,
POSITION is not necessary and thus not encoded. T is a termina-
tion flag, which indicates whether the current node is the last one in
the compressed bitstream or not. Note that we can avoid the use of
termination flag by specifying the number of nodes at the start of the
bitstream. However, this requires a preprocessing step or two-pass
encoding to determine the number of nodes in the whole octree.

As mentioned previously, the node type is determined according
to its depth: a node is transmitted as a P node if it is at the maximum
depth, and as an S node otherwise. Let us describe the compression
methods for S and P node data subsequently.

4.1. Compression of S Node Data

For an S node, DIB consists of the geometry and color data of the
child nodes. In Fig. 2, ��� denotes the geometry and color of the
�th child. It first indicates whether the child is a B or W node. If
it is B, ��� also contains the ��� �� �� color components, which are
DPCM-encoded. Specifically, the ��� �� �� components of the child
node are predicted from those of the current node, respectively, and
the prediction residuals are encoded with the arithmetic coder in [9].

4.2. Compression of P Node Data

A P node corresponds to a cube region in the volume data. Thus, the
geometry information of the P node is given by binary voxel values
within the cube. In this work, we encode those binary voxel values
based on the PPM method. Specifically, we encode each voxel value
using the neighboring voxel values as contexts.

Fig. 3 illustrates examples of contexts. The square voxel is to
be encoded, and the values of the 13 circular voxels are used as the
context shown in Fig. 3(a) and (b). Since the encoding is performed
in the raster scan order, those 13 voxels are causal neighbors of the
current voxel. Typically, black voxels form a locally smooth surface
in the 3-D space. Thus, the current voxel value can be estimated with
high accuracy from the neighboring voxel values. This property is
exploited by using the context-based adaptive arithmetic coder in [9].

Let �� be the number of voxels, whose values are used as con-
texts. As �� increases, the compression performance improves in
general. However, the number of possible contexts is ��� , which
incurs too high complexity even for a small value of ��. There-
fore, �� should be determined in consideration of both coding gain
and implementation complexity. In this work, we set �� to 10 as
a tradeoff between coding efficiency and complexity. If �� � ��,
there are 286 (� �����) methods to retain 10 context voxels from
the 13 neighboring voxels. Fig. 3(c) provides the best configuration
that provide the least conditional entropies which is estimated from
extensive simulations.

The color information of P nodes is encoded by a DCT-based
algorithm, which is similar to the JPEG standard [10]. First, we

II 486

(a) depth = ��� (b) depth = � (c) �� � ��

Fig. 3. An example of contexts: The square voxel in (b) is to be
encoded and the circular voxel values in (a) and (b) can be used as
the context. The best configuration of context voxels in the front
plane (depth = � � �) is shown in (c), when �� is ��. The four
additional context voxels in (b) are also used for this configuration.

form an 1-D sequence by gathering the black voxels within a P node
in the raster scan order. Second, the ��� �� �� color components of a
black voxel are converted into the ������ ��� components. Third,
the 1-D sequence for each � , �� or �� component is transformed
by DCT. Fourth, the DCT coefficients are quantized by the JPEG
quantization matrix. The quantization matrix is controlled by the
JPEG quality factor, which ranges from � to ���. A higher quality
factor corresponds to better image quality. Finally, the quantized
coefficients are run-length encoded using a Huffman codeword table.

For a P node, the color information requires a much higher bit
rate than the geometry information. But, the contribution of a color
bit to the rendered image quality is not as big as that of a geometry
bit. This is because the node is reconstructed as a visually annoying
bulky cube if the geometry data are not transmitted. In contrast, the
color approximation errors are less disturbing to the human visual
system. Therefore, it is not effective to transmit the geometry data
and the color data together as DIB. Instead, in this work, only the
PPM-encoded geometry data are transmitted as DIB. After the ge-
ometry data of all P nodes are transmitted, the less important color
data are transmitted.

5. TREE NODE TRANSMISSION

In this work, a PointTexture image is represented hierarchically by
an octree, and the octree nodes are transmitted in a top-down manner
to support progressive reconstruction at the decoder. The encoder
can select the transmission order of octree nodes adaptively accord-
ing to the requirements of applications. We propose a optimization
scheme to determine the transmission order: rate-distortion (R-D)
optimization.

5.1. Rate-Distortion Optimization

In this scheme, the transmission order is chosen to maximize the
quality of the reconstructed model at a given bit budget. At each
step, we select the current node from the list of transmittable nodes,
which maximizes the ratio

�
��

�	
� �

�� ���

	� �	�

� (1)

where �	 � 	��	� denotes the difference between the rate after
transmission (�) and the rate before transmission (�). Similarly,
�� � �� ��� denotes the distortion difference.

To compute �� in (1), we calculate the geometry distortion
�� and the color distortion ��. As a measure for the geometry
distortion, we adopt the Hausdorff distance [11]. Let � and �� denote

(a) Angel (b) Flower (c) Avatar (d) Dog

Fig. 4. The all models have the resolution of ��	 � ��	 � ��	.

the sets of coordinates of black voxels in the original model and the
approximated model, respectively. Then, the geometry distortion is
defined as

�� �
������ �
��
�����

�
���

��� � ��� (2)

where � � � means the Euclidean distance between two coordinates.
For the color distortion, we also use the Euclidean distance between
color vectors, and define

�� �
�

���

������ ������� (3)

where � and �� denote the color vectors of the original model and
the approximated model, respectively. Note that � is always a subset
of �� in this work, since P or S nodes are approximated by B nodes,
and that the summation in (3) is carried out over � only.

The overall distortion � is defined as the weighted sum of the
geometry distortion and the color distortion

� � ���� � ����� (4)

where �� and �� are weighting coefficients.
To compute �	 in (1), we need a method to calculate the re-

quired bits for S and P nodes. Except the Huffman coding of DCT
coefficients for P nodes, all the other data are encoded using an arith-
metic coder. The exact calculation of arithmetic-coded bit rate is too
complex in practice. Therefore, the entropy of each syntax item is
estimated from training images and is used instead of the arithmetic-
coded bit rate. For the DCT coefficients, the exact codeword lengths
are easily obtained with table lookup operations.

6. SIMULATION RESULTS

The performance of the proposed algorithm is evaluated using test
models in Fig. 4. The models have the resolution of ��	���	���	,
In this work, the tree depth is selected such that the size of leaf nodes
is �� �� �.

Figs. 5 illustrate the progressive transmission of the “Flower”
model. In this test, the transmission order of nodes is determined by
the R-D optimization scheme in Section 5.1. Note that the distortion
is computed by summing up the geometry distortion and the color
distortion with the weighting coefficients �� and �� in (4). We
evaluate three combinations: ���� ��� � ��� ��, ��� �� and ��� ��.
For the “Flower” model, the proposed algorithm provides the best
performance at ���� ��� � ��� ��. We see clear differences when
20% of the bitstreams are transmitted. This is because the “Flower”
model has a detailed, complex shape. In such a case, the geometry
information plays a more important role in the rendered image qual-
ity than the color information. Simulation results on various other
models confirm that the performance of the proposed algorithm is

II 487

Table 1. The compression performance of the proposed algorithm, when the quality factor is set to 80. GF represents the compressed file
size for geometry data only, while TF represent the file size for the whole (geometry+color) data (in bytes). PCR denotes the file size of the
algorithm in [12] for geometry data. MPEG denotes the file size of the algorithm in [6] for the whole data.

Proposed Ratio

GF (A) TF (B) PSNR PCR (C) MPEG (D) A/C B/D

Angel 38,624 137,971 36.88 117,194 247,111 0.33 0.56

Flower 17,899 59,256 34.87 62,084 75,199 0.29 0.79

Avatar 6,779 24,027 36.23 20,607 39,584 033 0.61

Dog 12,140 40,357 38.15 21,516 69,146 0.56 0.58

w

w

g

c

= 1

= 0

Transmitted

bits

w

w

g

c

= 0

= 1

w

w

g

c

= 1

= 1

10% 20% 30% 60% 100%

Fig. 5. Progressive transmission of the “Flower” model.

not sensitive to the weighting coefficients, as long as �� is set to be
larger than ��.

Table 1 summarizes the compression performance of the pro-
posed algorithm. When the whole bitstream is received, the decoder
can reconstruct geometry data losslessly. However, we encode color
data in a lossy manner. The quality factor is set to 80 in this test.
At this high quality factor, the color reconstruction is so faithful that
the reconstructed models are almost indistinguishable from the orig-
inal models. For comparison, the performances of the MPEG-4 AFX
algorithm [6] and the PCR algorithm [12] are also presented in Ta-
ble 1. Notice that the proposed algorithm consumes only 56 � 79%
of the bit rates of the MPEG-4 AFX scheme, by allowing negligible
losses in the color data. The PCR algorithm is a geometry compres-
sion scheme for voxel surfaces, which provides high coding gains
if input surfaces are thin and smooth. It is observed that the pro-
posed algorithm consumes only �� � �� % of the bit rates of PCR
for geometry coding. The coding gain is especially high for com-
plex shapes, such as the “Flower” model. Moreover, the proposed
algorithm supports progressive transmission, while PCR cannot.

7. CONCLUSIONS

In this paper, we proposed a progressive compression and transmis-
sion algorithm for PointTexture images, whose each pixel is asso-
ciated with a depth value as well as a color vector. The proposed
algorithm represents a PointTexture hierarchically using an octree.
The octree nodes are transmitted in a top-down manner so that the
decoder can reconstruct the 3-D data from coarse to fine resolutions.

We developed the R-D optimized scheme for determining the trans-
mission order of octree nodes, which can maximize the rendered
image quality at a given bit budget. It was shown by extensive sim-
ulations that the proposed algorithm efficiently supports progressive
transmission of PointTexture images.

8. REFERENCES

[1] Leonid Levkovich-Maslyuk, Alexey Ignatenko, Alexander
Zhirkov, Anton Konushin, In Kyu Park, Mahnjin Han, and Yuri
Bayakovski, “Depth image-based representation and compres-
sion for static and animated 3D objects,” IEEE Trans. Circuits
Syst. Video Technol., vol. 14, no. 7, pp. 1032–1045, July 2004.

[2] A. Kaufman, D. Cohen, and R. Yagel, “Volume graphics,”
Proc. IEEE Computer, vol. 26, pp. 51–64, July 1993.

[3] M. Levoy and T. Whitted, “The use of points as a display
primitive,” Technical Report TR 85-022, University of North
Carolina at Chapel Hill, 1985.

[4] J. Shade, S. Gortler, L. He, and R. Szeliski, “Layered depth
images,” in Proc. SIGGRAPH, July 1998, pp. 231–242.

[5] C. Chang, G. Bishop, and A. Lastra, “LDI tree: A hierarchi-
cal representation for image-based rendering,” in Proc. SIG-
GRAPH, Aug. 1999, pp. 291–298.

[6] Information Technology. Coding of Audio-Visual Objects. Part
16: Animation Framework eXtension (AFX), ISO/IEC Std.
JTC1/SC29/WG11 14 496.16, 2003.

[7] K. Sayood, Introduction to Data Compression, Academic
Press, second edition, 2000.

[8] M. M. Oliveira, G. Bishop, and D. McAllister, “Relief textures
mapping,” in Proc. SIGGRAPH, July 2000, pp. 359–368.

[9] P. G. Howard and J. S. Vitter, “Arithmetic coding for data com-
pression,” Proc. IEEE, vol. 82, no. 6, pp. 857–865, June 1994.

[10] Information Technology – Digital Compression and Coding
of Continuous-Tone Still Images, ISO/IEC Std. JTC 1/SC
29/WG 1 N993 Recommendation T.84 ISO/IEC cd 10918-3,
Nov. 1994.

[11] D. Huttenlocher, D. Klanderman, and A. Rucklige, “Compar-
ing images using the Hausdorff distance,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 15, no. 9,
pp. 850–863, September 1993.

[12] Chang-Su Kim and Sang-Uk Lee, “Compact encoding of 3D
voxel surfaces based on pattern code representation,” IEEE
Trans. Image Proc., vol. 11, no. 8, pp. 932–943, Aug. 2002.

II 488

