
EMBEDDED LINKED SIGNIFICANT TREE WAVELET IMAGE CODER

Tanzeem Muzaffar and Tae-Sun Choi
Gwangju Institute of Science and Technology,

Gwangju, Republic of Korea

ABSTRACT

This paper presents a new linked significant tree (LST)
wavelet coding method for efficient compression of
images. The proposed method links all the significant
coefficients together within a wavelet tree to facilitate
encoding algorithm. Insignificant parents with at least one
significant child found in the wavelet data are changed to
significant to link them together. Their location is saved
for identification, and they are then treated just like other
significant coefficients during encoding. LST encoding
process is performed next on the processed output for
compression. It exploits the fact that since all the
significant coefficients within a wavelet tree are linked
together, no descendent of an isolated coefficient can be
significant any more. This eliminates the need to check
descendents of those coefficients that are found as
insignificant. Locations of converted coordinates are sent
to the decoder after each encoding pass, in order to change
these values back to original during reconstruction. Better
compression is achieved when the proposed method is
applied to smooth images.

1. INTRODUCTION

Wavelet transform has become a very effective tool for

the compression of images. Many algorithms have been
proposed [1,2,6] in literature that employ wavelet
transform to compress image data. By deep analysis, it has
been observed that most of the wavelet transformed image
data lies in descending order within a subband tree at
different levels. Coefficients at higher level
subbands(parents) are generally of larger values compared
to coefficients at lower levels(children) of the same
orientation. This assumption is exploited and parent-child
relationship between subbands is used to achieve high
compression. Embedded zerotree wavelet coding (EZW)
by Shapiro[1] was the first to apply this relation for
compression of images. Since then, many improvements
have been proposed in wavelet compression techniques to
make it more efficient [2,3,4,5]. SPIHT [2], another well

known method was proposed later by Said and Pearlman
with improved performance and faster processing.

Although the assumption that wavelet data lies in
descending order within a subband is valid in most of the
cases, but still there are some coefficients that do not
follow it. There are some children that are of larger value
than their parents. This type of coefficient i.e. a significant
child with insignificant parent is termed as an isolated
significant. Extra processing is required to find the
isolated significant coefficients, and thus more bits are
required to code a given image. This paper presents a new
method that first links all the significant coefficients within
the wavelet transformed data prior to compression. Then,
LST encoding method is applied to the processed data for
efficient encoding.

The organization of this paper is as follows: Section 2
describes the proposed LST encoding algorithm for
efficient compression of an image. Section 3 shows
experimental results and discussion. Finally, the paper
provides its concluding remarks in section 4.

2. PROPOSED ALGORITHM

Fig. 1 Block diagram of proposed image coding algorithm

Natural images are generally smooth, so its wavelet
coefficients have a certain order of decay in scale and
space. But still there are several isolated significant
coefficients (i.e. significant coefficient with insignificant
parent) present in the wavelet transform data of an image.
These coefficients reduce the coding efficiency of the
algorithm. In this paper, this issue is reviewed and a new
compression method is proposed which first links all the
significant coefficients together within a wavelet tree at

Wavelet
Transform

Linking
Significant Trees

Proposed
Encoding

Store (I)
Information

Compressed data

II 461142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

same orientation, and then applies Linked Significant Tree
(LST) encoding to increase compression efficiency. LST
proposed in this paper, exploits the fact that if a coefficient
is insignificant, all its descendents will be insignificant and
need not be checked. Figure 1 shows block diagram of
proposed linked significant tree (LST) wavelet image
coding algorithm. Each block of the proposed LST coder
is described in detail below:

2.1 Linking Significant Coefficients:

In order to connect and link all the significant

coefficients together, isolated significant coefficients are
first searched in the transformed data using current
threshold value, and their insignificant parents ‘I’ are
marked for conversion as ‘I=1’. The proposed method
adds current threshold value to all the insignificant
coefficients in the wavelet tree that lies above the isolated
significant coefficient. If the insignificant parent ‘I’ is
selected for conversion, the proposed algorithm checks its
initial value(sign) and changes its value accordingly.
Current threshold value is added to the coefficient ‘I’
when it is positive, whereas threshold is subtracted in case
of negative valued coefficients. The addition (or
subtraction) of current threshold in the original value
makes it significant for that threshold, and in this way all
the intermediate coefficients marked as ‘I=1’ with isolated
significant child become significant. This method is
repeated for all the threshold values, so that no more
isolated significant coefficients exist in the transformed
data. Figure 1 below shows conversion of insignificant
parent of significant coefficient ‘I’ to significant symbol.

Fig. 2 Conversion of insignificant parent of significant
coefficient ‘I’ to significant symbol.

A new Linked Significant Tree wavelet image coding

algorithm is proposed to encode the processed wavelet

data. Since all the significant coefficients within a subband
tree are now linked together with no isolated significant
coefficient left in the transformed image, the proposed
encoder uses this property to improve compression results.
It uses three lists to encode the linked wavelet data i.e.
Pixel List(PL), children List(CL) and Significant
List(SL). PL checks significant pixels, CL searches
significant children of significant pixels, and SL stores
locations of already significant coefficients in the order of
occurrence along with information of converted
coefficients.

At the start of encoding process, PL is initialized with
all the locations in highest level subband of transformed
image, whereas CL and SL are initialized to zero. LST
encoder first checks all the entries in PL in its significant
pass. If any coefficient is found significant (i.e, coefficient
value >= threshold); the encoder transmits a ‘1’ followed
by its sign bit, removes its entry from the PL and adds it to
SL. The location of significant coefficient is also added to
CL to check significance of its children afterwards.
Otherwise, if the coefficient in PL is found as insignificant
(i.e. coefficient value < threshold), the encoder transmits a
‘0’ and moves on to next entry in the list. When all the
entries in PL are searched, LST algorithm starts checking
CL entries to find significant coefficients in its 4 children.
One bit for O(x,y) is used to indicate significance present
in the 4 children of coefficient(x,y). If any child is found
significant, the algorithm transmits O(x,y) as ’1’ showing
that at least one of its child is significant. It then encodes
significance of all its 4 children immediately afterwards,
i.e. sends ‘1' along with sign bit for significant child, and
‘0’ for insignificant child. The entry of CL is removed
from the list and split into 4 children. Insignificant
children locations are moved to PL, whereas significant
children are added to SL, as well as at the end of CL to
further search significant children of this newly found
significant coefficient. Entries of insignificant children are
not added to CL to search significance because no
significant coefficient exists after insignificant coefficient
within a linked significant wavelet tree. If no child at the
CL location is found significant, send O(x,y) as ‘0’ and the
algorithm moves on to next entry of CL without encoding
significance of its children. This process continues till all
the CL entries are tested for significance.

Once the encoder scans all the entries of PL and CL for
a certain threshold value, it sends locations of newly found
significant coefficients using SL in the update pass.
Significant List (SL) serves two purposes: first it holds
locations of significant coefficients (x,y), and secondly it
stores information about changed significant coefficients
in the order of occurrence to keep track of converted
coefficients. Converted coefficients marked as ‘I=1’ are
stored with a ‘1’ in SL for their identification. This stored

z p z .
 z z p .
 n z z . .

: :

I P . .
N Z . .
: :

 I + T P

P P . .
N Z . .
 : :

I = Insignificant parent coeff P/N = Significant coeff
T = Current threshold value Z = Zerotree coefficient

II 462

information of ‘I’ locations is transmitted to decoder in
this pass, which is used to revert the values for proper
reconstruction during decoding. Decoder identifies
converted significant coefficients ‘I’ using identical SL
maintained there, and changes them back to their original
value. Update pass is followed by refinement pass where
algorithm sends refinement bits of already significant
coefficients. For this purpose, one next bit value of
locations stored in SL are sent to decoder. Afterwards, the
encoder starts the significant pass again and searches PL
and CL again with a reduced threshold value, followed by
update and refinement passes. The process is repeated till
the desired bitrate is achieved. Figure 3 shows some
common scenarios of coefficient distribution in wavelet
data, and their coding results using LST compared with
SPIHT.

Fig. 3 Some common scenarios of coefficient distribution
in wavelet data

2.2 Coding Isolated-zero Locations ‘I’:

The proposed method encodes the isolated zero

information ‘I’ among newly found significant coefficients
in the update pass. Significant coefficient locations found
in the current significant pass are first stored in significant
list (SL) in the order of occurrence. These significant
coefficients of current pass in the list then search for
significance among its children (if any). One bit of ‘I’
information is sent for those coefficients that have at least
one significant child. This is done to differentiate isolated
zero coefficients ‘I’ that are temporarily converted to
significant, from real significant coefficients of the current
pass. A ‘0’ is sent to the decoder when a real significant
coefficient is present, whereas a ‘1’ bit is encoded for ‘I’
coefficients. The prior checking of significant children
before sending ‘I’ information is done because converted

coefficients ‘I’ can only exist when coefficient has
significant child(ren) present in the wavelet tree. Therefore
extra bit for ‘I’ information is sent only when coefficient’s
significant child exists, thus significantly improving the
encoding of ‘I’ information to identify isolated zeroes
among the significant pixels. Figure 4 shows an example
of subband tree with significant coefficients. In this case, a
total of 2 bits of ‘I’ information is sent, i.e, one bit each for
coefficients ‘a’ and ‘b’ (assuming ‘a’ to be a newly found
significant coefficient), as they are the only significant
coefficients with significant children.

Fig. 4 Coding Isolated zero locations ‘I’ among significant
symbols in subband tree

With the help of identical SL maintained at decoder,

this technique is used to identify all ‘I’ symbols among
newly found significant symbols of the current pass, and
original data can be recovered by simply eliminating first
nonzero MSB bit (threshold value at the time when ‘I’ was
made significant) of these coefficients. Figure 5 shows the
process of converting ‘I’ coefficient values back to their
original values.

Fig. 5 Converting values back to original by removing
first non-zero MSB bit during reconstruction.

2.3 Overhead:

The proposed algorithm uses a new approach to reduce

number of symbols in zerotree based coding. The
overhead in the proposed algorithm is that after ‘I’
becomes significant, it starts sending remaining bits in
subordinate passes, these bits are useless until true
significant bit is sent for that coefficient. Still, bits saved
by removing isolated zeroes are greater than what is sent
as overhead.

a

b c d e

f g h i j k l m n o p q r s t u

significant

insignificant

send ‘I’ info bit

0 0 1 X X X X 0 0 0 X X X X

Reconstruction

 = si gnificant coefficient = insignificant coefficient

Case 1 :

 SPIHT LST (proposed)
Total coded bits 7 bits 7 bits
Next level check
locations

4
{ b1,c1,d1,L(x0) }

4
{b1,c1,d1,D(a1)}

Case 2:

 SPIHT LST (proposed)
Total coded bits 16 bit s 12 bits
Next level check
locations

9
{b1,c1,d1,a2,a3,a4
,
D(b1),D(c1),D(d1)}

6
{b1,c1,d1,a2,a3,a4}

Case 3:

 SPIHT LST (proposed)
Total coded bits 15 bits 12 bits
Next level check
locations

10
{a1,b1,c1,d1,a2,a3,a4
,
D(b1),D(c1),D(d1)}

6
{b1,c1,d1,a2,a3,a4}

 ** For LST make a1=significant to link all coefficients together

x x

x0 a1 b1
c1 d1

a2 a3
a4 a5

b2 b3
b4 b5

c2 c3
c4 c5

d2 d3
d4 d5

x0 a1 b1
c1 d1

a2 a3
a4 a5

b2 b3
b4 b5

c2 c3
c4 c5

d2 d3
d4 d5

x0 a1 b1
c1 d1

a2 a3
a4 a5

b2 b3
b4 b5

c2 c3
c4 c5

d2 d3
d4 d5

II 463

3. EXPERIMENTAL RESULTS

The proposed algorithm was implemented in software

and experiments were performed to verify the results.
Several 8-bit grayscale images were used for experimental
purposes. The input image was first decomposed into five-
level wavelet transform. Processing of transformed output
was done before compression to link all significant
coefficients in a wavelet tree. Linked Significant Tree
wavelet coding methods was applied next on the resultant
data. The algorithm used z-scan coding approach to scan
significant pixels starting from highest level. Locations of
converted coefficients ‘I’ were also sent to decoder to
ensure proper reconstruction. Finally, reconstruction was
done at receiver to decode the coded bitstream data.

When this method was applied to 512x512 gray-scale
images, better compression was achieved compared to
SPIHT algorithm, for similar reconstructed image quality.
Results of encoded bitstream of the proposed LST
encoding method are compared with that of original
SPIHT and shown in Table 1, whereas their reconstructed
PSNR results are stated in Table 2. These results show that
the proposed LST coder improves the compression ratio of
an image especially when they are applied to images with
smooth texture. Figure 6 shows reconstructed gray-scale
images after compression using the proposed method.

Table 1 Comparative results of LST with SPIHT

Table 2 PSNR Comparison of LST with SPIHT

 (a) Lamp (36.18 dB) (b) Pepper (32.38 dB)
Fig. 6 Reconstructed images after 7th encoding pass

4. CONCLUSIONS

A new linked significant tree (LST) based wavelet

image coding method is proposed. It first links all the
significant coefficients together in the wavelet transform
data, and then compress it using LST image coding
algorithm for better results. Experiments show
improvement in results when the proposed method is
applied to smooth images. Complexity of the coding
algorithm is also reduced for easy implementation and fast
execution, a property useful in hardware design.

ACKNOWLEDGEMENT

This work was supported by the Korea Research

Foundation Grant (KRF-2003-041-D20470).

REFERENCES
[1] M. Shapiro, “Embedded image coding using zerotrees

of wavelet coefficients”, IEEE Transactions on Signal
Processing, pp 3445-3462, vol 41, Dec 1993.

[2] A. Said, W. Pearlman, “ A new, fast and efficient
image codec based on set partitioning in hierarchical
trees”, IEEE Transactions on Circuits and Systems for
Video Technology, pp 243-250, vol 6, Jun 1996.

[3] J. Wu, C. Oliver, C. Chatellier, “Embedded zerotree
runlength wavelet image coding” ICIP Proceedings,
pp 784-787, Oct 2001.

[4] C. Hsieh, Y. Chen, Y. Wu, F. Kuo, “Embedded image
compression using the important oriented tree”,
ISMSE Proceedings, pp 432-436, Dec 2000.

[5] I. Sodagar, H. Lee, Y. Zhang, “Scalable wavelet
coding for synthetic natural and hybrid coding”, IEEE
Transactions on Circuits and Systems for Video
Technology, Mar 1999.

[6] D. Taubman, “High performance scalable image
compression with EBCOT”, IEEE Transaction on
Image Processing, pp 1158-1170, vol 7, Jul 2000.

[7] http://cmp.felk.cvut.cz/~fojtik/gallery/gray.htm.

No. of
Passes

Image
(512x512

SPIHT
(bytes)

LST
(bytes)

PSNR
(dB)

Gain
(%age)

Pepper 3071 2994 29.47 2.50 %
Lamp 1364 1362 32.98 0.15 %
Tiffany 3310 3266 27.70 1.33 %
Cow3d 2451 2324 38.75 5.18 %

 6

Splash 1915 1931 31.87 -0.83 %
Pepper 6258 6071 32.38 2.99 %
Lamp 2872 2822 36.18 1.74 %
Tiffany 8348 8205 30.76 1.71 %
Cow3d 4969 4694 43.16 5.54 %

 7

Splash 3828 3750 35.62 2.03 %

 Bitrate(bpp)
 Image

0.1 0.2 0.3 0.4 0.5

LST 29.78 32.62 34.00 35.03 35.49
Pepper SPIHT 29.66 32.50 33.96 34.91 35.61

LST 34.81 38.24 40.06 41.44 42.12
Splash SPIHT 34.71 38.04 40.07 41.15 42.16

LST 36.74 40.68 43.09 44.85 46.20
Lamp SPIHT 36.68 40.56 42.94 44.81 46.09

LST 40.44 45.72 49.76 52.74 54.46
Cow3d SPIHT 40.12 45.21 49.30 52.17 54.07

LST 53.44 66.88 - - -
Squares SPIHT 53.05 66.43 - - -

II 464

