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ABSTRACT

SPIHT is an efficient image compression algorithm based on
zerotrees. The significant wavelet coefficients are located by
a series of set partitioning operations and then scalar quan-
tized. Block-based algorithms inspired by SPIHT such as
AGP and SWEET have good performance, but they are not
embedded. Pearlman et al. proposed a block-based SPECK
algorithm using set partitioning of embedded blocks to exploit
the energy clustering characteristics of the coefficients while
the bit stream remains embedded. We here propose a varia-
tion on SPECK using vector quantization to code the signif-
icant coefficients. Different VQ techniques including TSVQ
and ECVQ are also considered. Vector SPECK shows a per-
formance improvement over JPEG 2000 at the cost of added
complexity.

1. INTRODUCTION

Said and Pearlman [1] proposed the SPIHT algorithm to scan
the wavelet coefficients using a set-partitioning method based
on the concept of zerotrees. Block-based algorithms have re-
cently become popular because it is easier to implement scal-
able image compression through blocks. Several block-based
algorithms inspired by SPIHT including AGP and SWEET
have good performance, but are not embedded. Pearlman et
al. proposed a “set-partitioning embedded block” (SPECK) [2]
algorithm without using zerotrees to exploit the energy clus-
tering characteristics within the subbands while the output bit
stream remains embedded. SPECK can also be used to gener-
ate embedded bit streams for code blocks of JPEG 2000. Most
SPIHT-related algorithms focus on coding the significance
map of the coefficients. The significant coefficients are coded
by a simpler scalar quantizer. It is reasonable to consider en-
coding these significant coefficients as vectors since the adja-
cent wavelet coefficients are not independent. Mukherjee and
Mitra [3] have explored a similar idea in their vector SPIHT
algorithm by using 4D vectors to code the significant coeffi-
cients. In a similar vein, we here use vector quantization to
code the significant coefficients for SPECK.
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2. VECTOR FORMING

Wavelet coefficients in different subbands maintain their ori-
entations. The cross correlations between elements of a vec-
tor can be higher if the vector is formed in accordance with
proper orientation. A VQ codebook trained from a highly
correlated source generally has a lower distortion. We use
a 9/7 biorthogonal wavelet transform with 5 decomposition
levels in our experiment. There are 16 subbands in total (Fig-
ure 1). We create 4D vectors with different shapes based on
their orientations for coefficients of subband O to 9. The orig-
inal set partitioning procedure method in SPECK][2] is de-
picted in Figure 2(a). The basic coding unit of SPECK is a
pixel. The encoder continues partitioning any significant set
until the set contains only one pixel. In vector SPECK, the
basic coding unit is a vector. We start with the same sets and
continue partitioning any significant set that is larger than a
4 x4 block using the same principle until the significant set is
a 4x4 block. Further partitioning depends on the orientation.
The shapes of vectors within the new sets are either square or
rectangular as can be seen in Figure 2 (b — d). The magnitudes
of coefficients at higher subbands are generally smaller than
those of the lower bands, so the bit requirement is lower. It is
reasonable to consider using vectors with higher dimensions
to further exploit the correlations among adjacent coefficients.
We partition a significant 4 x4 block at a higher subband into
two 8D vectors as in Figure 3.
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Fig. 1. All subbands.
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Fig. 2. Vector forming in lower bands
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Fig. 3. Vector forming in higher bands

3. VECTOR SIGNIFICANCE

The basic idea of SPECK is to locate significant coefficients
through a set partitioning method and then encode those sig-
nificant coefficients through scalar quantization. The series
2™ are used as thresholds to determine the significance of a
coefficient, starting from nmax = |max; j) |¢; ;|- If the sig-
nificant coefficients are to be coded as vectors, a new mea-
sure of significance is necessary. Mukherjee and Mitra [3]
proposed using the Ly norm of a vector as the threshold in
their vector SPIHT algorithm. A vector x is significant with
respect to n if ||x|| > threshold(n). Different sets of thresh-
olds are suggested in their related papers.[3, 4, 5]

In SPIHT or SPECK, a scalar z; is significant with respect
to n when 2" < ||z;|| < 2"*!. Assuming each element x; of
a vector x € R* satisfies 2" < ||z;|| < 27, then 27+ <
[|x|] < 2"+2. We choose the thresholds such that a vector
x € R* is significant with respect to n, if 2"+ < [|x|| <
27+2 Although the assumption is not always true, our exper-
iments show that these thresholds perform well enough. By
applying the same principle to 8D vectors, a vector x € R? is
significant with respect to n, if 21/22" < ||x|| < 2v/227+L.

4. CODEBOOK DESIGN

In SPECK, the value of n,,x is sometimes as large as 13 for
common test images. The algorithm thus has to start from
n = 13. The scarcity of such high-energy pixels does not
cause problems because no training is required. It becomes an

important issue, however, for vectors with large coefficients.
Experiments show that coding high-energy vectors generally
requires more bits if the distortions are to be within an accept-
able range. Experiments suggest that an n = 10 codebook
is the highest n for which enough data can be collected for
training. Such a conclusion also means that any vector signif-
icant with respect to n = 11 or higher will be encoded by the
n = 10 codebook.

Reflection on the SPECK algorithm suggests appropriate
bit rates for the codebooks. if the target bit rate is 0.2 bpp,
then the algorithm stops at n = 4 or n = 5 so that 7 or 8
bits are allocated to encode significant coefficients located at
the first pass of n since the value of np,,x is usually 12 or
13. If a 4D vector is formed by these coefficients, using 28
to 32 bits to encode this vector seems a reasonable choice.
A codebook with 30 bits is not practical for full-search VQ.
A tree-structured VQ such as a multistage VQ, residual VQ,
or TSVQ designed by Lloyd splitting is practicable at such
codebook sizes, but typically the number of stages is limited
to 2 or 3 to avoid the loss of quality due to residual error accu-
mulation. For example, a 2-stage VQ with a 15-bit codebook
at each stage can serve as a 30-bit VQ. The optimal bit rate
for an n = 10 codebook varies among different test images
and rate constraints. A multistage tree-structured VQ can be
adopted to add more stages so that the bit allocation can be
done through successive refinement. For example, the 30-bit
codebook can be a 2-stage VQ and each stage codebook is a
3-level tree-structured VQ with 5 bits per level. Such a code-
book can be viewed as a 6-stage codebook. Our experiment,
however, shows that such multistage codebooks do not im-
prove flexible bit allocation under different rate constraints.
Another solution is to design different codebooks with every
possible rate. A proper codebook can be selected during a
“classified VQ” encoding process based on a test image. We
use fixed rate coding for the n = 10,9, 8, 7 codebooks and we
prefer full-search VQ to tree-structured VQ designed using a
Lloyd splitting algorithm, and we prefer the Lloyd-splitting
tree-structured VQ to multistage VQ. We can train as high
as a 21-bit tree-structured VQ and a 16-bit full-search VQ in
our experimental environment. The candidate codebooks for
n = 10,9,8,7 are shown in Table 1. Entropy constrained
VQ usually performs better than standard VQ with a variable
length coder. A codebook with a higher rate can be used as an
initial codebook. The average bit rate moves toward the target
rate as the Lagrange multiplier A increases. We can train an
ECVQ codebook with a rate of as high as 14 bits in reason-
able time. For these reasons, entropy constrained VQ is used
only for the n = 3,4, 5, 6 codebooks. The candidate rates are
listed in Table 1. As our focus is on low bit rates, we do not
consider n < 3 codebooks.

We choose n = 5 as the highest n value for 8D vectors
in the higher subbands based on the distribution of the vec-
tors. All 8D vectors significant to higher n are encoded by
the n = 5 codebook. The candidate bit rates are determined
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by doubling the rate of 4D codebooks with the same n. We
designed tree-structured VQ using the Lloyd splitting algo-
rithm with rate 17 to 22 and full-search VQ with rate 15 and
16 for n = 5 codebooks. Entropy constrained VQ is used by
any codebook with bit rate 14 or below. The list of codebooks
is in Table 2.

n | configuration | total rate n | total rate
10 16_16 32 6 14
10 16_15 31 6 13
10 15_15 30 6 12
10 15_14 29 6 11
10 1414 28 6 10
9 13_13 26 6 9
9 13_12 25 5 11
9 12_12 24 5 10
9 12_11 23 5 9
9 11.11 22 5 8
9 1110 21 5 7
8 12_12 24 5 6
8 1211 23 4 7
8 11_11 22 4 6
8 11.10 21 4 5
8 10.10 20 4 4
7 10.9 19 3 5
7 9.9 18 3 4
7 9.8 17 3 3
7 16

7 15

7 14

7 13

7 12

7 11

’_’ indicates a stage in the multistage VQ
> indicates a level in the tree-structured VQ

Table 1. 4D codebooks

5. BIT ALLOCATION STRATEGY

Each vector in the significant list is marked by a number n
that indicates the norm range of that vector. Mukherjee and
Mitra [4] observe that such marking can be viewed as the re-
sult of classification. The strategy to select a proper codebook
for each class from the candidates is equivalent to an optimal
bit allocation problem for the classified VQ. Riskin [6] pro-
vided an algorithm to allocate bits optimally for a classified
VQ based on the generalized BFOS algorithm. A 2-level tree
can be built with the classifier at the root node and each class
as a leaf node as in Figure 4.

n | configuration | total rate n | total rate
5 11.11 22 4 12

5 11.10 21 4 11

5 10.10 20 4 10

5 10.9 19 4 9

5 9.9 18 4 8

5 9.8 17 3 10
5 16 3 9
5 15 3 8
5 14 3 7
5 13 3 6
5 12

> indicates a level in the tree-structured VQ
Table 2. 8D codebooks
Classifier
Dim 4 Dim 4 Dim 4 ° ° ° Dim 8
n=10 n=9 n=8 n=3
Class 1 Class 2 Class 3 Class 11
(R1,D1) (R2,D2) (R3,D3) (R11,DI1)

Fig. 4. Codebooks merged into a classified VQ

An input vector is classified at the root node and coded by
the codebook of that class. For each class¢ = 1,2,..., M,
the probability is p;, the average rate is 7;, and the average
distortion is d;(r;). The overall distortion and rate are

D =
R =

p1di(r1) + pada(re) + ... + pardpr(rar)
piry +pereo + ...+ PMT M-

The next bit allocation is obtained by pruning class 1 so that
ry =T

D' = pidi(ry) +pada(ra) + ... + pudar(rar)
R = piri+pers+...+purym
AD D'-D _ dl(Tll)—dl(T’l)

A = ——— =—
AR R — R

L — T

The generalized BFOS algorithm chooses the class causing

the minimum distortion increase should be the class to be

pruned. We constrain the candidate bit rate for each class to

be integers. Therefore A = dy (1) —dy (1) givenr; —r} = 1.
The complete bit allocation algorithm is

1. Assume each class ¢ has rate r; € (g1 ---¢i,n;)
where: =1,2,... M.
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Set r; = ¢; n; the maximum rate for each class 4.
Add x = [r1,ra,...,7M] to the output list.

2. Calculate

i _ _AD _ di(r)) —di(ri — 1)
S’L(T’Hr’t ]-) - AR - r; — (Ti _ 1)
= di(r; — 1) — di(r;)
L = arg min S;(rj,r;—1)

1,78 >qi,1

Setrp, =r —1

Add x = [ry,rg,...,7)] to the output list.

3. Ifry =g;1 foralléi =1...M, stop.
If not, go to step 2.

The above algorithm generates a set of optimal bit alloca-
tions along the rate distortion curve. The best bit allocation
can be selected given the operating bit rate. A portion of the
bit budget, however, is dedicated to the coding of the signifi-
cance map in SPECK. It makes the exact number of bits left
for the vector quantization hard to estimate. One solution is to
select the best bit allocation by trying all candidates. A 6-bit
index can be added at the beginning of the output stream to
transmit this information.

6. EXPERIMENT

The codebooks are trained by a large corpus composed of
15,000 natural images randomly chosen from the Internet.
Each image is cropped into 512512 pixels and transformed
by the 9/7 biorthogonal transform. Such a large corpus should
provide enough training data for vectors with high energy. We
applied the vector SPECK algorithm to the test images Bar-
bara, Goldhill and Lena and evaluated the PSNR at 0.125, 0.2
and 0.25 bpp. A comparison of SPECK, JPEG 2000 and vec-
tor SPECK is given at Table 3. Vector SPECK provides per-
formance that is better than SPECK and comparable to JPEG
2000. The performance improvement is gained at the cost of
added encoder complexity due to the vector quantization.

7. CONCLUSION

We have shown that vector SPECK is an effective algorithm
for exploiting the correlation between adjacent coefficients.
The performance at low bit rate is better than JPEG 2000.
The asymmetric property of VQ greatly increases the encoder
complexity but keeps the decoder complexity low. Therefore
this codec may not be suitable for heavy coding and decoding
applications, but it is still a good choice for static applications
such image data archiving.
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Lena
Bit rate | SPECK | JPEG 2000 | VSPECK
0.125 30.96 30.92 31.25
0.2 32.99 32.96 33.47
0.25 34.03 34.09 34.33
Barbara
Bit rate | SPECK | JPEG 2000 | VSPECK
0.125 24.92 25.35 25.36
0.2 26.76 27.17 27.46
0.25 27.68 28.36 28.40
Goldhill
Bit rate | SPECK | JPEG 2000 | VSPECK
0.125 28.38 28.38 28.78
0.2 29.68 29.84 30.11
0.25 30.43 30.53 30.91

Table 3. Comparison of results
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