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ABSTRACT

We consider the lossy image compression problem and propose a
model-residual approach. Polynomial basis images encode the model
image and powerful new trellis codes quantize the residual part. A
simple bit allocation scheme determines the residual bit rates. Re-
sults are shown for the 0.4–1.6 bits per pixel region. Comparisons
are made to several state-of-the-art techniques and show that the pro-
posed scheme is very competitive.

1. INTRODUCTION

Digital image communication has become increasingly popular dur-
ing the past years. Uncompressed digital images require a very high
storage (or transmission) capacity. Thus it is of vital importance to
find suitable methods for data reduction in the context of image com-
munication. Modern image coding is often based on transforms in
one form or another. The purpose of applying the transform is to find
a representation suitable for compression (lossy or lossless). While
most state-of-the-art methods are based on the increasingly popular
wavelet transform (see, e.g., [1], [2], [3], [4], [5]), a different path
has been chosen in this paper.

We propose an image compression system based on a model-
residual representation. Polynomial basis images are used to rep-
resent the model components and the corresponding quantization
error, i.e., the residual image signal, is encoded by a trellis quan-
tizer based on a class of the newly proposed SR/LC codes [6]. The
rate allocation of the residual encoder is given by a simple classi-
fication scheme which also provides the possibility of progressive
transmission. Simulation results are given for a number of different
bit rates and test images. The paper is concluded with a comparison
to state-of-the-art methods and a discussion on the perceptual qual-
ity of the encoded images. It should be mentioned that in this work
we only consider monochrome, or grayscale, images. However, the
proposed method is easily adapted to color images. It should also be
mentioned that only photographic pictures of natural elements are
suitable for the lossy compression methods presented here.

2. MODEL-RESIDUAL REPRESENTATION OF IMAGES

The model-residual concept takes advantage of the fact that many
real-life signals, such as speech and photographic images, can be
characterized by a combination of long-term and short-term descrip-
tions, respectively. The original source signal is thus divided into
two parts and we refer to these as the model and the residual signals,
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respectively. These parts are processed independently with differ-
ent methods. There are two main advantages with quantizing one
small part of the image, a so-called subimage, at a time. First, the
computational burden can be significantly reduced. Second, local
pixel variations can be captured by a small-block encoder. Blocking
artifacts can be reduced with the appropriate quantization method.

A set of basis images bw, w = 0, 1, . . . , W − 1 serves as the
model. The model basis images are defined as matrices of the same
dimension as the subimages, namely N ′

1 × N ′
2 pixels. The model

subimage is then represented by a weighted sum of basis images.
We consider only orthonormal basis images and hence the model
images can be written as

ms =

W−1∑
w=0

p(w)
s · bw, (1)

where p
(w)
s is the wth model coefficient, or weighting factor, for

subimage s. W is the number of basis images used in the model.
The wth model coefficient for the original subimage block xs is

p(w)
s =

N′
1∑

n1=1

⎛
⎝ N′

2∑
n2=1

xs[n1, n2] · bw[n1, n2]

⎞
⎠ , (2)

where xs[n1, n2] is the picture element at position [n1, n2] in subim-
age s. Thus p

(w)
s describes how much of xs that is spanned by the

hyperplane defined by bw. From (1) and (2) it follows that the resid-
ual image block rs can be written as

rs = xs − ms = xs −
W−1∑
w=0

p(w)
s · bw (3)

= xs −
W−1∑
w=0

⎛
⎝ N′

1∑
n1=1

⎛
⎝ N′

2∑
n2=1

xs[n1, n2] · bw[n1, n2]

⎞
⎠

⎞
⎠ · bw.

The last equality holds only if the model coefficients are not quan-
tized. A study on different types of basis images was performed
in [7]. The results showed that the polynomial structure had the best
performance of all types of basis images considered in the survey.
Polynomial basis images, as used in the current work, were first pro-
posed in [8].

The left-hand side of Figure 1 shows a segment of the model
image of the test image lena. The corresponding residual image is
shown in the right-hand part. In both figures blocking artifacts are
clearly visible. In the following we will show how these effects can
be significantly reduced. Since the model coefficients are real-valued
they must be quantized before transmission or storage. However, it
was shown in [7] that only Rmod = 0.1 bits per pixel (bpp) are
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Fig. 1. Test image lena. Segment of model image (left), and resid-
ual image (right). Block size 16× 16 and W = 6. In the right-hand
side the grayscale has been inverted for better printability.

W 4 6 10
Image N ′ 8 16 8 16 8 16
lena 29.18 25.83 31.73 27.18 33.78 28.33
goldhill 28.62 25.71 30.29 26.72 31.80 27.68

Table 1. Model PSNR in dB for the test images as a function of W
and subimage size. N ′

1 = N ′
2 = N ′.

needed in order to represent a model subimage of size 8 × 8 pixels
with W = 6. Table 1 summarizes the model PSNR for different test
images.

3. ENCODING OF THE RESIDUAL SUBIMAGES

Since the model removes low frequency components, the residual
image has elements that are noise-like. Hence a candidate method
for quantizing the residual components is trellis based quantization.
The actual trellis codes will be further discussed below. Before quan-
tization the residual blocks are serialized according to the Peano–
Hilbert (PH) method. It should be mentioned that only quantization
of blocks with the same size as the model subimages is considered.
Unfortunately the residual blocks are non-stationary and thus it can-
not be assumed that they have variance one. Therefore all residual
blocks are normalized before quantization. All residual blocks have
mean zero since the first model component corresponds to the mean
value of each block. The variance of each block can be transmitted
at a very low additional rate per pixel.

3.1. Trellis Quantizer Parameters

A number of parameters must be specified for the trellis quantiz-
ers. These include the actual choice of codes, reproducer alphabets,
quantization rate estimations, and encoder algorithm. The trellis
quantizers utilized in the current work are based on the newly devel-
oped SR/LC trellis codes. Details are given in [6]. These have been
shown to have very competitive performance. The SR/LC trellis
codes deploy the usual forward shift register (SR) state-transitions.
The label on the kth branch stemming from state i, i = 0, 1, . . . , M−
1, is generated according to

l
(k)
i = (g(k) · i + a(k)) mod M, k ∈ {0, 1, . . . , 2R − 1}, (4)

where R ≥ 1 is the (integer) source coding rate of the trellis quan-
tizer. g(k) and a(k) are design parameters. Good design parameters

are listed in [9]. SR/LC trellis codes are easily extended to fractional
rates by having multiple labels per branch.

Each of the M labels is mapped to a reproducer value and we
simply associate the jth label with the jth reproducer value. Since it
is assumed that the PDF of the residuals is close to either that of the
Gaussian or Laplacian, the initial reproducer value sets were chosen
to match these distributions. Thus

yj = F−1

(
2j + 1

2M

)
, j = 0, 1, . . . , M − 1, (5)

where F (x) is either the Gaussian or Laplacian CDF. For the present
application the codes with Gaussian reproducer letters performed on
average 0.5 dB better for all test images, see Table 2. A more so-
phisticated approach is to utilize optimized alphabets. To generate
these alphabets the procedure in [10] was used. For the optimiza-
tion procedure a training set consisting of the residuals of a number
of standard test images was used. To avoid biased codebooks each
target image was removed from the training set.

It is often desired to include a lossless encoder in the trellis struc-
ture. A good estimate of the source coding rate in this case is the ex-
pectation of − log2 Pr{yj |state i} averaged over all M states [11]

R̄ = −
M−1∑
i=0

Pr{state i}
M−1∑
j=0

Pr{yj |state i} log2 Pr{yj |state i},

(6)
where all quantities are estimated by simulations of the system.

Since the serialized residual blocks have relatively short block
lengths, a candidate encoding algorithm is the tailbiting BCJR al-
gorithm [12]. With some modifications to handle short blocks the
standard Viterbi algorithm could also serve as an encoder.

3.2. Bit Allocation

Since the images are non-stationary the value of the PSNR will change
from block to block. Hence it is desirable to allocate a higher resid-
ual bit rate to blocks with a low model PSNR. To solve this problem
we propose a method in which the quantization rate is controlled by
a threshold parameter θ. This procedure is similar to the subband
classification process present in many wavelet based image coders,
see e.g., [4], [5]. In our approach, the PSNR for each subimage of
the model image is first computed. If the model PSNR is larger than
θ a quantization rate of R1 bits is used, else the residual is quantized
with R2 > R1 bits. If 0 ≤ ν ≤ 1 is the fraction of subimages with
a PSNR higher than the threshold, the residual bit rate is

Rres = (1 − ν) · R1 + ν · R2. (7)

With this method the value of θ determines the residual bit rate in
the range R1 ≤ Rres ≤ R2. It also makes progressive transmission
possible: as the rate (controlled by θ) increases, a higher number
of residual blocks are encoded and transmitted. The total overhead
for the bit allocation is just 1/N ′

1N
′
2 bpp. It is possible that the

components of R1 and R2 have been estimated by (6). However,
note that this method by itself does not require entropy coding to
produce a wide range of rates.

4. RESULTS

Table 2 shows PSNR scores for different test images using the model-
residual approach. For the total bit rate Rtot = Rmod+Rres lossless
compression is not considered in this case. Moreover, the results in
the table correspond to having θ = 0, R1 = 1, and ν = 0 in (7).
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Image Gauss Laplace Optimized
lena 35.16 34.62 35.31
goldhill 34.02 33.53 34.18

Table 2. Model-residual approach. Encoded PSNR in dB us-
ing different sets of reproducer alphabets. Trellises have 8 states.
Rtot = 0.1 + 1.0 bpp.

Thus all residual blocks are quantized with 1 bpp. The block size
was set to 8 × 8 pixels and the model images all have W = 4. Thus
the corresponding model PSNRs are given in the leftmost column of
Table 1. In comparison to Table 1 the typical performance increase is
about 5–6 dB for all images under consideration. These results are in
accordance with pure rate-distortion quantization of IID memoryless
sources.

Figure 2 shows the performance for codes with rate allocations
according to (7) for different combination of R1 and R2. For the
same bit rate the results in the figure are clearly better than those
provided in Table 2. This shows the importance of proper bit allo-
cation. The figure legends correspond to the settings listed in the
associated table. Note that (a)–(c) utilize a perfect entropy coder for
which the rates for the residual quantizers have been estimated ac-
cording to (6) for each residual rate component. All the results are
for trellises with 32 states and Gaussian reproducer values. By in-
creasing the state-size from 8 to 32 states we improve the results for
all test images by 0.3–0.4 dB in the 1 < Rtot < 1.6 region. Again,
these findings are consistent with usual trellis quantization of IID
sources.

The main disadvantage with the proposed method is that no fur-
ther gain in PSNR is possible after, say, 1.6–1.7 bpp. The reason
is that the highest quantization rate used by the proposed method is
R = 2 bits per sample for the residual part. Thus the maximum bit
rate is Rtot = 0.1 + 2.0 = 2.1 bpp if the transmission of the model
parameters is also take into account. However, this limitation is of
no major importance if the image quality is high, i.e., around 40 dB,
at this bit rate. For such a high PSNR a further increase in the PSNR
will not yield a higher perceptual image quality for most practical
applications.

With the PSNR plots at hand a comparison to methods proposed
in the literature is possible. We only compare the PSNR-versus-rate
performance and do not consider the computational complexities of
the different methods. Such an analysis would be difficult to con-
duct on this limited space since the methods are based on different
approaches. Table 3 compares the results of the proposed method
(denoted “New”) to a number of state-of-the-art image coders. For
this comparison the settings according to Figure 2 (c) were used. The
entropy rate was estimated according to (6). Worth noticing is that
all cited methods are based on the wavelet transform. Some of the
methods in the table, viz. [2], [4], and [5], are also based on trellis
quantization. Unfortunately no information regarding the trellis state
sizes is given in any of the papers. For the results in Table 3 the new
SR/LC trellis codes have 32 states. In conclusion, the new method
performs within 2 dB from state-of-the-art for the test image lena.
For the goldhill image the gap is even closer (within 1 dB). The
same behavior has been observed at Rtot = 0.5 bpp.

We now turn our attention to the perceptual quality of the en-
coded images. Segments of the test images lena and goldhill
encoded with Rtot = 0.6 bpp are shown in Figure 3. In compari-
son to the model image of lena, see Figure 1, the blocking artifacts
have been significantly reduced. In this segment of the image only a

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
33

34

35

36

37

38

39

40

Rtot

PS
N

R

(a)
(b)
(c)
(d)

0.4 0.6 0.8 1 1.2 1.4 1.6

32

33

34

35

36

37

38

39

Rtot

PS
N

R

(a)
(b)
(c)
(d)

(a) R1 = 1/2, R2 = 1 and R1 = 1, R2 = 2

(b) R1 = 1/2, R2 = 2

(c) R1 = 0, R2 = 2

(d) Same as (c) but without entropy coder

Fig. 2. Model-residual approach. PSNR as a function of the total
encoding rate. Test images lena (up) and goldhill (down).

Image New [1] [2] [3] [4] [5]
lena 39.1 39.6 39.9 40.5 41.1 41.2
goldhill 36.6 36.2 37.0 36.6 36.7 37.3

[1] Shapiro: Embedded Zerotree Wavelet coder
[2] Sriram and Marcellin: Entropy-Constrained TCQ
[3] Said and Pearlman: Set Partitioning in Hierarchical Trees
[4] Joshi et al.: Subband Classification
[5] Xiong and Wu: Trellis Coded Space-Frequency Quantizer

Table 3. Comparison of proposed method to state-of-the-art image
coders. Rtot = 1.0 bpp.

fraction of the blocks have been transmitted without residual encod-
ing, see the hat band in the upper left quad of the figure. The reason
is the large amount of details contained in this part of the original
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Fig. 3. Magnified segments of the test images lena and goldhill
encoded with 0.6 bpp.

Fig. 4. lena and goldhill encoded with 0.6 bpp.
PSNR=37.4 dB and PSNR=33.7 dB, respectively.

image. In areas outside the face and the hat of the woman the sit-
uation is the reversed. A second example is given in the right-hand
side of Figure 3 which shows a magnified part of the goldhill
image. In this image the blocking artifacts are more apparent. How-
ever, one must remember that the images in Figure 3 show only a
small segment (128 × 128 pixels) of the entire image (512 × 512
pixels). The full-sized encoded images are displayed in Figures 4.
To the naked eye, the perceptual quality of the encoded images is
almost indistinguishable to that of the original test images.

5. CONCLUSIONS AND FUTURE WORK

This paper has provided some applications that indicate that the newly
developed SR/LC trellis codes can be useful in image coding. It is
common knowledge that image compression should be based on in-
vertible transforms only. Two examples frequently used in image
coding are the discrete cosine transform and the discrete wavelet
transform. However, the results in this paper show that a combi-
nation of a non-invertible transform, i.e., the model representation,
and a powerful residual encoder, i.e., the trellis quantizer, could also
be a successful approach. Since the energy of the residual compo-
nents are not uniformly distributed over the whole residual image, a
simple classification scheme was used to determine the bit rate for
each block. This approach greatly increases the image quality at a
negligible cost. Moreover, the classification scheme also makes pos-
sible a large range of encoding rates without the need of an entropy
coder.

While the performance of the proposed method is quite promis-
ing, the main purpose of this paper has been to introduce the method
as such and not to provide a fully optimized scheme. Thus future
work considers further optimization of the system. Two possible top-
ics include a more sophisticated bit allocation procedure and higher
residual rates, cf. settings (a) and (c) in Figure 2. Another straight-
forward extension is to form a joint source and channel coding sys-
tem based on the trellis structure.
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