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ABSTRACT

This article presents a new lossless compression algorithm
based on a Finite Radon Transform. The baseline of this
work consist in encoding the difference between several sim-
ilar finite Radon projections. Two differential encoding tech-
niques are needed to efficiently encode the Radon trans-
formed data. An intra-projection encoding technique is first
performed, this differential encoding process takes benefit
of the redundancy present in such projections. The second
step consists in encoding the similarities between Radon
projections, this is the inter-projection encoding procedure.
The used Finite Radon transform (called Mojette transform),
allows to ensure both compression and data redundancy.
The main novelty of this work is the use of a secure dis-
tributed storage or transmission tool in a lossless compres-
sion context.

1. INTRODUCTION

We present here a joint source channel coding technique
based on a finite Radon transform [R1]. The most popu-
lar applications of the Radon transform takes place in med-
ical imaging context. This transform may be used to recon-
struct images from medical CT scans. In fact, the Radon
transform is widely exploited in the tomography context.
A few finite Radon transform exist in the open literature
[AGB1, S1]. The version exploited here is named Mojette
transform [AGB1], it has been mostly used in a transmis-
sion context. Effectively, this Discrete version of the Radon
Transform is exactly invertible, and extremely tunable in
terms of redundancy. The main applications of the Mo-
jette transform so far were: multiple description coding,
Forward Error Correcting Codes or encryption, dedicated
to distributed storage area or quality of service network. A
few attempts to perform compression techniques based on
finite Radon transform have exploited the central slice theo-
rem [MOLP2]. This work had a dual goal, the two intended
applications were image compression and pattern detection.
The image reconstruction was based on the Fourier central

slice theorem. This process strongly differs from the one we
will see in the following. The central slice theorem applies
a Fourier transform on the Radon projections, and place the
so-obtained coefficients in a Fourier Spectrum. Finally, an
inverse Fourier transform provides the reconstructed image.
In the presented study, the goal is to propose a joint source-
channel encoding technique, i.e. we have to satisfy the
complex task of providing both compression (source cod-
ing) and redundancy (channel coding). To the best of our
knowledge, no technique have ever combined redundancy
and compression by exploiting the same operator (Radon
transform). Furthermore, the inverse Radon transform used
here is totally different from the central slice theorem. The
general principle of this work is to exploit the redundancy
provided by the Mojette transform in a differential coding
technique. Effectively, an interesting property of the Mo-
jette transform is the periodicity appearing within the pro-
jections. Furthermore, by adequately choosing the projec-
tion direction set (very close angles), important similarities
will inevitably occur between projections. This work ex-
ploits both the periodicity within each projection, and the
similarities between projections by applying two separate
differential coding techniques. Moreover, such process may
be exploited in an encryption context. It has been demon-
strated that applying the inverse Mojette transform on erro-
neous bins leads to a quick propagation of errors, providing
encrypted images [AGB1]. Such encryption framework is
briefly envisioned here, no new encryption technique is pro-
posed, but the Mojette transform’s adaptability to encryp-
tion algorithms is highlighted by a simple experiment. A
unitary incrementation is applied on one single projection,
and shows the encrypted reconstructed data.

This paper is decomposed as follows, section 2 will fo-
cus on the Mojette transform, both the direct and inverse
algorithms will be detailed. The section 3 is devoted to the
lossless compression algorithm. We will see how we can
take advantage of the similarities between and within pro-
jections to efficiently compress the data. Finally, section 4
gives the results for both the compression rate and redun-
dancy coefficient for fifteen grey scale images.
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2. MOJETTE TRANSFORM

2.1. Direct Mojette transform

The Mojette transform is an exact and discrete Radon trans-
form [R1] defined for specific projection angles. The trans-
formed domain of an image is a set of projections where
each element (called a bin like in tomography) corresponds
to the sum of the crossed pixels along the projection line.
Like the usual Radon transform, the Mojette transform rep-
resents the image from a set of projections, but with an exact
discrete inverse. The projection angles, provided by a set of
vectors (pi, qi) must respect the condition where pi and qi

are prime together. This is a linear transform defined for
each projection angle by the operator:
Mp,qf (k, l) = projp,q (b)
=

∑+∞
k=−∞ f (k, l) ∆ (b + kq − lp)

where ∆ (b) =
{

1 if b = 0
0 if b �= 0 , and where the (k, l)

pixel belongs to the image. The Mojette transform MIf (k, l)
corresponds to the set of I projections Mp,qf (k, l) for sev-
eral angles indexed by i:

MIf (k, l) = {projpi,qi = Mpi,qif, i ∈ [1...I]}
Each bin value equals the sum of the pixels crossed by

the appropriate line b = lp − kq. The main difference
with the Radon transform is the sampling on the projections,
which depends on the chosen angle. The figure 1 (top panel)
represents the Direct Mojette transform according to the di-
rections set S = {(0,−1) (1, 2) and (−1, 1)}. The number
of bins for each projection depends on the chosen discrete
angle. The algorithmic complexity of the Mojette transform
for a N pixels region with I projections is O(IN).

2.2. Inverse Mojette Transform and reconstructibility
notion

The first result on the reconstruction conditions came from
Katz [K1] in a different context. An image is reconstructible
by a set I of projections when f (k, l) can be obtained only
from these I projections. The results found in Katz can be
written as the equivalence of two propositions:

i) f (k, l) defined on a rectangular region G (of size P ×
Q), can be reconstructed with the set MIf (k, l)

ii) P ≤ PI =
∑I

i=1 |pi| or Q ≤ QI =
∑I

i=1 |qi|
Theorem 1. [GN1] The R region is the smallest region

being not reconstructible i.e. any region which does not en-
tirely contains R can be reconstructed with SI . Another
way to describe this result is the equivalence between these
two propositions:

i) f(k, l) defined on a convex G can be reconstructed
with the set SI ,

ii) R constructed by dilations with SI cannot be included
into G.

Fig. 1. Direct Mojette Transform (top panel), and the three
first steps of the inverse transform (bottom panel).

More details on both the Katz lemma and the recon-
structibility notion given by the first theorem can be found
in [AGB1]. The inverse Mojette transform corresponds to a
simple and fast algorithm. The bin value is back-projected
into the pixel and subtracted from all projections. The bot-
tom panel of figure 1 shows a example of the three first steps
of the inverse Mojette transform.

3. COMPRESSION TECHNIQUE

The proposed compression technique takes advantage of the
similarities within each Mojette projection, as well as the
similarities between projections. From now on, these two
separate techniques will be named “intra-projection cod-
ing” and “inter-projections coding”. The figure 2 shows
the projections of image “watch” (see fig. 5), with 3 di-
rection angles: (pi, qi) = (1, 128) , (1, 129) , (1, 130). This
figure clearly shows the strong similarities between all pro-
jections. The x-axis represents the bins positions, whereas
the y-axis stands for the bins values (the sum of the crossed
pixels). These similarities are even more evident in figure 3,
where a zoom is performed. Such strong similarities implies
that a very efficient differential coding technique might be
exploited. As explained in section 2, the number of bins

Fig. 2. Mojette projections for directions (1,128), (1,129)
and (1,130).

for each projection depends on the chosen direction angle.
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We then have to perform a projection scaling in order to be
able to compute the differences projections on the same sup-
port size. Evidently, this scaling must be reversible and the
chosen support will have to be the biggest one (projection
(1, 130) in figure 2).

3.1. Intra-projection coding

Figure 3 highlights both the intra-projection periodicity and
inter-projections similarities. It represents a zoom in of fig-
ure 2 for the range [11000, 11400]. The two top figures, and
the bottom left one represent a zoom on projections (1,128),
(1,129) and (1,130) respectively, while the bottom right fig-
ure stands for the intra-projection coding (performed on pro-
jection (1,130)). The periodicity within the Mojette projec-

Fig. 3. Zoom in, projections (1,128), (1,129), (1,130), and
intra-projection difference (1,130). Range: [11000, 11400].

tions can be efficiently encoded by computing for each bin
position, the difference between the current bin value and
the value of the bin shifted by one period (this period equals
q). This intra-projection encoding principle is depicted by
the grey dashed lines in figure 3.

3.2. Inter-projections coding

Once the intra-projection coding applied, the inter-projection
encoding technique can then be performed. This latter sim-
ply computes for each bin position, the pair by pair differ-
ences between all projections. For the example given above
(figure 3), the inter-projection difference is given in figure
4 The so-obtained difference projections having many val-
ues close to zero, we expect an entropy coding technique to
be quite efficient on such data. The next section is devoted
to the evaluation of the presented technique. Compression
rates and redundancy coefficients are given for a set of 15
test images.

Fig. 4. Inter-projection difference.

4. RESULTS

The lossless compression technique have been tested on 15
images for two distinct projections sets. These projection
sets are respectively denoted as S1 and S2 :

S1 = {(1, 128) (1, 129) (1, 130)} and
S2 = {(1, 85) (1, 86) (1, 87) (1, 88)}. This section pre-

sents the results for fifteen grey level images (see figure 5)
(256 × 256, 8 bits per pixel). Evidently, one could use
the same process on colour images, and furthermore, an
inter chromaticity-component differential coding could be
applied. This will be the focus of a later study. Based on

Fig. 5. The fifteen tested images.

this proposed compression technique, at least two options
are available for the encoding process. The first choice
(denoted as Exp1 in the following) is to apply the intra-
encoding technique on each projection, and then to perform
the inter-encoding process between all intra-encoded pro-
jections. This implies that we need to transmit a basis intra-
encoding projection along with all others inter-encoded ones.
The second option (denoted as Exp2) is to compute an over-
all mean projection (for which each bin equals the mean
value of all projections), to apply the intra-encoding tech-
nique on this mean projection, and finally compute the inter-
encoding process between all projections and this mean one.
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Table 1 shows the detailed results for Exp1: an intra-encoded
projection is transmitted along with the inter-projections dif-
ferences. Direction set S1 is tested with the “peppers” im-
age.

Table 1. Entropy results for Exp1, direction set S1.
peppers, R=1.51 length Entropy Red./ Compr. Size (kb)

Original 2562 65,5

Encoded 2562 7,5 93% 61,4

intra-proj 33406 5,81 24,2

inter:(128-129) 33406 5,00 20,8

inter:(129-130) 33406 5,20 21,7

Sum 2 projs 66812 1,00; 68% 45,0

Sum 3 projs 100218 1,51; 101% 66,7

The figure 6 gives both the compression rates (right panel)
and overall entropy (left panel) for the whole set of images
and for the two experiments. A comparison with lossless
JPEG 2000 rates is given in the first panel. As previously
mentioned, an encryption algorithm can easily be derived.
An encryption algorithm on the “basis” projection will au-
tomatically lead to decode erroneous bins (during the dif-
ferential decoding), and thus, to back-project errors into the
image. A former study [AGB1] demonstrated the very quick
and devastating propagation of such errors into the recon-
structed image. Two encrypted images are given in figure 7
(each bin simply underwent a unitary incrementation).

Fig. 6. Compression rates (top panel) and entropy (bottom
panel) for 15 images and for 2 direction sets.

5. CONCLUSIONS

This work presents a new lossless encoding technique based
on a Finite Radon Transform. The aim of this preliminary

Fig. 7. Encrypted images “lena” and “peppers”, only one
modified projection (by simple unitary incrementation).

study was to introduce the idea of inter- and intra-projection
differential coding. One could evidently have chosen to first
apply a standard compression algorithm to the image, and
to compute the Mojette projections afterwards, on the com-
pressed data. Nevertheless, the idea of merging the data into
one important projection can be efficiently exploited by en-
cryption algorithms. Furthermore, we are convinced that
an optimisation of both the intra and inter projection dif-
ferences may provide much higher compression rates. This
will indeed be the main focus of further researchs. Even
though the results so far can not compete with usual joint
source-channel encoding techniques, we believe that many
improvements could be performed to sensibly improve the
ratio between the compression rate and redundancy. For in-
stance, a Run Length Encoding (RLE) technique might be
very helpful on the inter-projection encoding results.
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