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ABSTRACT

The rapid growth of digital imaging technology and the accumu-
lation of large collections of digital images has created the need
for efficient and intelligent schemes for image classification and re-
trieval. Since humans are the ultimate users of most retrieval sys-
tems, it is important to organize the contents semantically, according
to meaningful categories. We propose a novel approach for assign-
ing semantic labels to image segments, which together segment lay-
out information can lead to content-based image classification and
retrieval. The proposed approach relies on a perceptually based,
spatially adaptive, color-texture segmentation scheme. We derive
segment-wide features (color and spatial texture). These features
serve as medium level descriptors that can effectively bridge the “se-
mantic gap” between low and high level descriptors. The segment
classification into semantic categories is based on linear discrimi-
nant analysis techniques. We demonstrate the effectiveness of the
proposed approach on a database that includes 5000 segments from
approximately 2000 photographs of natural scenes.

1. INTRODUCTION

The goal of content-based image retrieval (CBIR) is to facilitate the
automatic indexing of large image repositories based on image se-
mantics. The field of CBIR has been extensively researched in recent
years with main emphasis on query by example based on matching
low-level image features, such as color and texture, with or without
relevance feedback by the user. (See [1] for a review.) However,
none of the proposed approaches has achieved satisfactory perfor-
mance because it has been difficult to infer semantic meaning from
low-level features. This gap between low-level image features and
high level semantics is known as the semantic gap.
Recently several approaches have been proposed that attempt

to bridge the semantic gap in order to produce an automated CBIR
system. Most of the approaches utilize some kind of image segmen-
tation scheme, to extract the image regions and then try to obtain
their content as well as their context within an image. Zhu et al. [2]
partition the image into equal size blocks and index the regions us-
ing a codebook whose entries are obtained from the block features.
Wang et al. [3] also propose a codebook based approach, whereby
the codebook is used to segment the image based on the statistics of
the region color and texture features. Their approach also attempts
to take into account properties of the neighboring regions. Pan et
al. [4] use a simple segmentation technique to segment an image

This work was supported by the National Science Foundation (NSF) un-
der Grant No.CCR-0209006. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the authors and do not
necessarily reflect the views of NSF. This work was also supported by the
Motorola Center for Telecommunications at Northwestern University.

into regions and extract their features. Each region is is given a la-
bel called a blob-token. The authors attempt to find the association
among the blob-tokens and the associated captions to index the im-
age. Li and Wang [5] use a statistical modeling approach in which
images of a given concept are regarded as the instances of a random
process characterizing this concept. Their method utilizes 2D hidden
Markov models to calculate a measure of association between the
image and the textual description of a concept. Finally, Mojsilovic
and Rogowitz [6] attempt to link low-level image features directly to
image semantics.
Despite all this effort, the effectiveness of CBIR systems has

not been satisfactory and they are still a long way from matching
the performance of the human visual system (HVS). This paper pro-
poses a novel approach for image indexing that utilizes perceptual
models for image segmentation and classification. Our group has
developed an adaptive, perceptual color-texture segmentation algo-
rithm that combines knowledge of human perception with an under-
standing of signal characteristics to segment natural scenes into per-
ceptually, semantically uniform regions [7]. We describe how this
new segmentation methodology can be used for image labeling and
classification. This requires the derivation of region-wide color and
texture features. Such medium level descriptors are the key to bridg-
ing the gap between low-level image primitives and high-level im-
age semantics. However, these descriptors are meaningful only if the
segments are perceptually/semantically relevant. Thus, the success
of the proposed approach is critically dependent on the segmentation
methodology proposed in [7]. We present techniques for assigning
labels to image segments based on color and spatial texture descrip-
tors. Further improvements can be achieved by incorporating the
segment location, size, and boundary shape, as well as the proper-
ties of the neighboring segments. However, in this paper we focus
on color and spatial texture. We demonstrate the effectiveness of the
proposed approach using a database of approximately 2000 images
of natural scenes, which were segmented using the algorithm in [7].
Our results indicate that the proposed approach can offer significant
performance improvements over existing approaches.
The focus of this paper is on still images. The techniques we

discuss, however, can also form the basis for content-based analysis
of video sequences. We consider the domain of photographic images
with a wide range of content (indoor and outdoor natural and man-
made scenes).

2. COLOR-TEXTURE FEATURE SELECTION

We now review the color-texture features that were developed for the
adaptive perceptual segmentation algorithm proposed in [7]. These
features can also be used for segment classification.
The segmentation approach [7] incorporates models of human
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(a) (b) (c) (d)
Fig. 1. Color-texture image features and segmentation. (a) original color image (b) adaptive dominant colors (c) texture classes (smooth
regions are shown in black, horizontal in gray, and complex in white) (d) final segmentation

perception and signal characteristics. It is based on two types of
spatially adaptive features. The first provides a localized description
of the color composition of the texture and the second models the
spatial characteristics of its grayscale component.
The color composition feature exploits the fact that the HVS

cannot simultaneously perceive a large number of colors. In addi-
tion, it accounts for the spatially varying image characteristics and
the adaptive nature of the HVS. It thus consists of a small number
of spatially adaptive dominant colors and the corresponding percent
occurrence of each color in the vicinity of a pixel:

fc(x, y, Nx,y) = {(ci, pi), i = 1, . . . , M, pi ∈ [0, 1]} (1)

where ci is a 3-D color vector and pi is the corresponding percent-
age. Nx,y denotes the neighborhood of the pixel at (x, y) andM is
the number of dominant colors in Nx,y; a typical value isM = 4.
The spatially adaptive dominant colors are obtained using the adap-
tive clustering algorithm (ACA) [8]. An example is shown in Fig-
ure 1(b). The perceptual similarity between two color composition
feature vectors is based on the “Optimal Color Composition Dis-
tance (OCCD),” which finds the optimal mapping between the color
composition features of two segments and computes the average dis-
tance between them in the CIE L*a*b* color space.
The spatial texture feature extraction is based on a multiscale

frequency decomposition with four orientation subbands (horizon-
tal, vertical, +45o, -45o). Here, we use a one-level steerable filter
decomposition with four orientation subbands. The local energy of
the subband coefficients is used as a simple but effective charac-
terization of spatial texture. At each pixel location, the maximum
of the four subband coefficients determines the texture orientation.
A median filtering operation boosts the response to texture within
uniform regions and suppresses the response resulting from to tran-
sitions between regions. Pixels are then classified into smooth and
non-smooth classes, and non-smooth pixels are further classified on
the basis of dominant orientation, as horizontal, vertical, +45o, -45o,
and complex (i.e., no dominant orientation). An example is shown
in Figure 1(c).
The segmentation algorithm combines the color composition and

spatial-texture features to obtain segments of uniform texture. It is a
fairly elaborate algorithm that relies on spatial texture to determine
the major structural composition of the image and combines it with
color, first to estimate the major segments, and then to obtain accu-
rate and precise localization of the border between regions.
Several critical parameters of the texture features and segmen-

tation algorithm can be determined by subjective tests [9]. These
include thresholds for the smooth/non-smooth classification, for de-
termining the dominant orientation, and for the color-composition
feature similarity. The goal of the tests is to relate human perception
of isolated (context-free) texture patches to the statistics of natural
textures. Experimental results demonstrate that this perceptual tun-
ing leads to significant improvements in segmentation performance.

3. SEGMENT-WIDE FEATURE EXTRACTION

We now discuss the development of medium level color and spatial
texture descriptors. While image segmentation requires a combina-
tion of local and global features [7], region classification requires
segment-wide features. Thus, for each segment, we recalculate the
color composition and spatial texture features using only informa-
tion from within the segment, that is, the local averages and medians
are computed across and strictly within the segment. The texture
features of the segment can be similarly described by the percent-
age of smooth, horizontal, vertical, +45o, -45o, and complex pixels
. An example is shown in Fig. 2, where (a) shows a segmented im-
age, (b) shows a selected segment, (c) shows the segment-wide color
composition (dominant colors and percentages), and (d) shows the
region-wide spatial texture features (percentage of smooth, horizon-
tal, vertical, +45o, -45o, and complex pixels).
Observe that there is an asymmetry between the two types of fea-

tures. The spatial texture features consist of six labels and the corre-
sponding percentages, while the color composition features consist
of up to four dominant colors (which take essentially a continuum of
values) and the associated percentages. In order to reduce the dimen-
sionality of the color composition features, we assign color names to
the dominant colors of each region. The procedure for assigning
color names can be found in [10]. The selected color names (labels)
are consistent with a National Bureau of Standards recommendation
for color names. The syntax contains color names for 267 regions in
color space, and employs English terms to describe colors along the
three dimensions of the color space: hue, lightness and saturation.
There are seven discrete values for lightness, five discrete values for
saturation, and a basic set of eleven prototypical hues, as shown in
Table 1. Thus, if we assign labels based on hue only, we end up
with 14 labels (and corresponding percentages) instead of a contin-
uum of color values, which establishes a symmetry with the spatial
texture features. The use of a limited number of colors is consistent
with Boynton’s study, which found that when people are asked to
categorize colors, the number of perceptually distinguishable color
categories is small. (See his 1989 paper “Eleven colors which are
almost never confused” [11].)

4. SEMANTIC LABELING

Once the medium level descriptors have been identified, the task is
to extract semantic labels, first at the segment level and then for the
entire image. Recent subjective experiments have identified impor-
tant semantic categories that people use for image organization and
retrieval [6]. Two important dimensions in human similarity percep-
tion are “natural” versus “man-made,” and “human” versus “non-
human.” It was also found that certain cues, such as “sky,” “water,”
“mountains,” etc., have an important influence in human image per-
ception. Rather than trying to obtain a complete and detailed de-
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Fig. 2. Segment-wide feature extraction. (a) Segmented image. (b) Selected segment. (c) Its color composition. (d) Its texture composition.

Hue Hue Saturation Lightness Achromatic
Primary Secondary
Red Reddish Grayish Blackish Black
Orange Brownish Moderate Very-dark Gray
Brown Yellowish Medium Dark White
Yellow Greenish Strong Medium
Green Bluish Vivid Light
Blue Purplish Very-light
Purple Pinkish Whitish
Pink
Beige
Magenta
Olive

Table 1. Color Naming Syntax

scription of every object in the scene, then, this information suggests
that for image classification, it may be sufficient to isolate segments
of such perceptual significance.
Our first goal is to assign labels to image segments. To this end,

we have assembled a vocabulary of labels consistent with the above
findings, as well as those used in annotation of the NIST TRECVID
2003 development set [12]. The set of labels we selected is a sub-
set of NIST lexicon. To describe the content of an image we use
two types of labels, segment and scene labels. The segment labels
describe the semantics of a particular segment (e.g., building, sky),
while the scene labels describe the (higher-level) semantic content
of the image (e.g., beach scene). The latter cannot be inferred from
a particular image segment alone. The segment labels we chose are
shown in Table 2, and are arranged in a hierarchical manner, at the
top of which are the natural, man-made, human categories, and only
leaf nodes are used in the annotation.

Learning and Classification

To demonstrate the effectiveness of the proposed approach, we con-
ducted a set of simple experiments with a database of approximately
2000 photographs. The majority of the images were obtained from
the Corel Stock Photo Library. Additional images were obtained
from a Key Photos Library and the investigator’s personal repository.
The images in the database cover a variety of outdoor scenes, with a
wide range of themes. As the initial focus of our experiments was on
natural vs. man-made classification, we did not include any scenes
with humans or animals. The human detection problem (especially
face detection) is well-studied in the literature [13], and the existing
techniques can easily be combined with the proposed approach. The
problem of animal detection is more complicated because of natu-
ral camouflage. However, we believe that the proposed approach is
capable of segmenting and detecting animals.
The images were segmented using the adaptive perceptual color-

texture image segmentation algorithm [7] described above, and the
resulting segments were manually labeled to be used as the ground
truth for supervised learning and testing. Each segment was assigned
exactly one label. Segments whose area was less than two percent of
total image area were not considered. This resulted in approximately
5000 labeled segments, 80% of which were used for training and the
rest for testing.
For training and classification we have considered several meth-

ods including: linear discriminant analysis (LDA) [14], K-nearest
neighbors (KNN), support vector machines (SVM) [15,16], and Gaus-
sian mixture models (GMM) [17,18]. We did not consider the KNN
approach due to its inability to compactly represent the classification
function. SVMmethods usually perform well, but their performance
is dependent on good selection of the kernel function. Since the ker-
nel function is usually chosen heuristically, there is no guarantee that
the same kernel function will perform well if new classes are intro-
duced, or if a classification is performed deeper in the hierarchy. This
leaves us with a choice between GMM and LDA. Our experiment
indicate that LDA significantly outperforms GMM. This is because
our feature vector clusters are not Gaussians, and a small number of
Gaussians is not enough to approximate their distribution. Increas-
ing the number of Gaussians requires increasing the training set and
computational complexity. Furthermore, the expectation maximiza-
tion method (EM) used to build a GMM converges only locally.
The LDA was applied hierarchically, starting from the top node

down to the leafs, obtaining a finer classification at each step. In the
experiment described here we used only spatial texture and color-
name composition descriptors. We mapped the dominant colors onto
the 11 prototypical hues shown in Table 1 and the three achromatic
colors (black, gray, and white) for a total of 14 colors. Thus, the
feature vector contains a percentage for each of these 14 colors. The
overall dimension of the feature vector is 20 (six textures and 14
colors). For the example in Fig. 2, the feature vector for the selected
segment contains the percentages for the six texture categories, while
all the color entries are zero except for gray (50%) and white (50%).
The resulting segment label is “building/house” (man-made).

5. CLASSIFICATION RESULTS

We evaluated the performance of the proposed method using the
standard measures that are used for search strategies in the litera-
ture. The recall is the ratio of the correctly labeled segments to the
total number of relevant segments in the database (i.e., those with the
particular label). The precision is the ratio of the correctly labeled
segments to the total number of segments that the algorithm assigned
to the particular label (both correct and incorrect). Both performance
measures are expressed as percentages.
Our segment classification results are shown in Fig. 3, and com-

pare favorably to the methods described in the literature (e.g., [19–
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Natural Man-made Human Animal
Vegetation Sky Landform Water
Grass Day-sky Snow Building/House Face

Trees/bushes Night-sky Mountain/Hill Bridge Person
Forest Sun Ground Car People
Flowers Clouds Pavement/Road1 Boat

Sunrise/Sunset Airplane
Other

Table 2. Segment Labels

Fig. 3. Classification Results

24]). The precision and recall rates for the categories at the top of the
hierarchy (natural vs. man-made) are quite impressive, especially if
one takes into account the fact that we did not use the segment size,
location, shape, and any information about neighboring segments.
The rates for the categories further down in the hierarchy are not as
impressive, but still compare well to the literature.
The poor performance for the water category can be attributed

to inadequate feature selection. Since the color quntization is very
coarse, water (whose primary hue is blue or green) gets confused
with sky and sometimes vegetation or mountains. Our experiments
indicate that expanding our color descriptors (e.g. to include light-
ness) and incorporating the location information in the feature vector
of each segment can eliminate this confusion.
Overall, we believe that the inclusion of additional features (more

color names, segment area, position, and shape), as well as the prop-
erties of the neighboring segments, will further improve performance.
Finally, we also plan to use probabilistic layout models in order to
combine the information from the segments in order to obtain an
overall scene interpretation.
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