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ABSTRACT

Scene is a series of semantic correlated video shots. An effective

scene detection depends on domain knowledge more or less. Most

existing approaches try to directly detect various scene changes by

applying clustering or supervised learning methods to low level au-

diovisual features. However, robustly detecting diverse scene changes

derived from complex semantic meanings is still a challenging prob-

lem. In this paper we are focused on the association of visual sig-

nal changes (e.g. cuts, fade-in, fade-out, etc.) and audio signal

changes (e.g. speaker change, background music change, etc.) to

propose a mid-level scene change representation, which is meant to

locate candidate scene change points by characterizing temporally

uncorrelated properties of audio and visual track in the case of scene

change happening. By incorporating domain knowledge, enhanced

features can be further extracted to complement this representation

to bridge semantic gap towards scene change detection. We utilize a

camera motion estimation algorithm to detect visual signal changes.

Such visual change positions are selected as time-stamp points. An

alignment is performed to search for candidate audio signal change

positions by multi-scale Kullback-Leibler(K-L) distance computing.

Both metric-based K-L distance approach and model-based HMM

are applied to determine true audio signal changes. The associated

visual and audio signal changes are considered as the mid-level scene

change representation. This representation has been successfully ap-

plied to detect boundaries of individual commercial in TV broadcast

stream with an accuracy of around 95%. Particularly the systematic

alignment approach can be utilized in video summarization.

1. INTRODUCTION

Currently, Scene change is used more often to segment and clas-

sify all types of video data. In news video, for example, scene

change may be referred to as the transitions among programs of

news, weather, sports, and commercial. News program can be seg-

mented into different stories. Saraceno et al. [1] proposed a rule

based approach to classify video scenes into: dialogs, stories, ac-

tions, and generic. Huang et al. [2] used HMM-based classifiers to

segment and classify scene according to predefined scene classes; in

film video, Sundaram et al. [3] proposed a listener model and defined

a correlation function that determines the correlation with past data

to decide scene changes; in sports video, scenes may be classified

according to events such as goal, foul, attack, etc.

The challenges of scene change detection lie in these aspects: (a)

Since a scene is a series of semantic correlated shots, scene change is

required to indicate semantic inconsistency between adjacent scenes,

whereas it is difficult to generally represent the semantic scene change

directly with low level audio-visual features; (b) Scene change de-

pends on the predefinition of scene classes at different semantic lev-

els. For example, the scene classes of news, weather, commercial

and sports in [2]; the scene classes of play and break in soccer video

in [4]; (c) Editing effects may bias the similarity computing between

different scenes; (d) Visual signal change may not synchronize with

audio signal change, this also add the difficulty of scene change de-

tection; (e) The judgement of semantic correlation between scenes

is subjective more or less.
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Fig. 1. Statistics of time offsets between an audio signal change and

its associated visual signal change in news program and commer-

cial (a positive offset value in sec indicates a delayed audio signal

change).

According to extensive observation of news video and commer-

cial video, the video signal changes often occur ahead of audio signal

changes in news video whereas it is the inverse in commercial video

as indicated in Fig. 1. In news video, the camera shot first switch to

the speaker, then speaking starts. A response time cause the delay.

The time offset is said to result from the production procedure. In or-

der to attract attention, commercial video uses more editing effects.

The voice often comes first, then the speaker shot fades in. The time

offset is said to result from post-editing effects. For editing effects,

such as fade in and fade out, the visual change position is located

at the middle of the shot transition while the audio change position

is often delayed to the end of the shot transition. According to the
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statistics in Fig. 1, more than 91% time offsets lie in the range of less

then 0.5 second in both kinds of video.

This paper proposes a mid-level scene change representation to

bridge the semantic gap between low-level features and high-level

scene change. Like audio and video keywords used in sports video,

the mid-level scene change representation is proposed as one of mid-

level features. It can be combined with other enhanced features to ac-

complish video segmentation, classification and retrieval at the level

of semantic scenes. Our proposed scene change representation has

been successfully applied to individual TV commercial boundary de-

tection [5]. Scene change representation is meant to indicate tempo-

ral inconsistency of audio and visual content that human naturally

perceive. For visual and audio signal change indicate the uncorre-

lated property on audio and video separately, an alignment problem

is studied. Since visual and audio signal changes may not occur

synchronously, an integrated consideration of these two changes can

well characterize video content’s temporal correlated or uncorrelated

properties. A representation of jointly considering these two kinds of

changes can capture the influence of auditory and visual continuity

on human perception.

This paper is organized as following: Section 2 gives an overview

of our proposed mid-level scene change representation. Section 3

briefly introduces visual signal change detection. Section 4 discusses

audio signal change detection. An audiovisual alignment is studied

in Section 5. Experimental results are given in Section 6. Section 7

draws a conclusion. Finally Section 8.

2. SYSTEM OVERVIEW
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Fig. 2. System Framework

As illustrated in Fig. 2, we are focused on the association of

visual signal changes and audio signal changes to propose a mid-

level scene change representation. At the low-level, we detect vi-

sual signal change by camera motion analysis; by using the visual

change position as a time-stamp point, we extract audio features and

shift the audio window at a certain range to search for the audio sig-

nal change. Each pair of associated visual and audio signal change

is considered as the scene change representation. At the mid-level

stage, this representation can be combined with other domain depen-

dent features to achieve semantic scene segmentation and classifica-

tion, such as individual TV commercial boundary detection, wherein

each commercial corresponds to a scene.

3. VISUAL SIGNAL CHANGE

In our approach, camera motion estimation algorithm is applied to

detect the visual signal changes. We use the support associated to

the estimated dominant camera motion to detect visual change po-

sitions. At each time instant, we choose the robust multi-resolution

motion estimation algorithm described in [6] to estimate camera mo-

tion. The support Sd is the set of point satisfying ω(p) ≥ ν, where

ω(p) is the weight indicating whether or not the point belongs to part

of the frame under the dominant motion and ν is a predefined thresh-

old. Hinkley test in parallel is employed to look for the downwards

and upwards visual signal changes:

Sk =

kX
t=0

(ζt − m0 +
δmin

2
) (k ≥ 0) (1)

Tk =

kX
t=0

(ζt − m0 − δmin

2
) (k ≥ 0) (2)

Mk = max
0≤i≤k

Si; Nk = max
0≤i≤k

Ti

in which ζt is the normalized support; the mean m0 is the support

when no change takes place; δmin is the minimal change magnitude.

If Mk −Sk > α or Tk −Nk > α(α is a threshold), the visual signal

change occurs. Some of the results are illustrated in Fig. 3.
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Fig. 3. Visual Signal Change Detection. a, b, c are cuts, a is a down

jump, b and c are up jumps; d is a jump from zoom in to zoom out.

4. AUDIO SIGNAL CHANGE

4.1. Audio Feature Selection

Our audio signal change approach considers 43-dimensional audio

features comprising Mel-frequency cepstral coefficients (MFCCs)

and its delta values and acceleration values, (36 features), mean and

variance of short time energy log measure (STE) (2 features), mean

and variance of short-time zero-crossing rate (ZCR) (2 features),

short-time fundamental frequency (or Pitch) (1 feature), mean of the

spectrum flux (SF) (1 feature), and harmonic degree (HD) (1 fea-

ture) [7, 8]. As a result of the dynamic nature of complex sounds, we

divide the audio signal into many successive 20 ms analysis frames

obtained by shifting a 20 ms sliding window with an interval of 10

ms. Those features are computed for each frame. Within each 20

ms analysis frame, we compute the features of STE, ZCR, SF and

Harmonic peaks once every 50 samples at an input sampling rate of

22,050 samples/s wherein the sliding window duration is set to 100

samples. Means and variances of STE and ZCR are calculated for 7

results from 7 overlapped frames while mean of SF is calculated for

6 results from 7 neighbor frames. HD is the ratio of the number of

frames that have harmonic peaks to the total number of 7. Pitch and

MFCCs are computed directly from each 20 ms frame.
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Fig. 4. A series of K-L distance to show feature effectiveness for

audio signal change detection. Most of the K-L distances between

non-audio signal change samples are 160; while most of the K-L

distances between audio signal change samples are 285.

MFCCs furnish a more efficient representation of speech spec-

tra, which are widely used in speech recognition. STE provides a

basis for discriminating between voiced speech components and un-

voiced speech components, speech and music, audible sounds and si-

lence. Compared with speech, ZCR of music features a much lower

variance and average amplitude. ZCR is also useful for distinguish-

ing environmental sounds. Pitch determines the harmonic property

for audio signals. Voiced speech components are harmonic while

unvoiced speech components are non-harmonic. Sounds from most

musical instruments are harmonic while most environmental sounds

are non-harmonic. General speaking, SF values of speech are higher

than those of music but less than those of environmental sounds.

To show the effectiveness of selected 43-dimensional audio fea-

tures, we choose 200 non-audio signal change samples and 200 au-

dio audio signal change samples. The duration of each audio sam-

ple is 2 second. The audio data cover diverse audio classes such as

speech, different kind of music, speech with music background, en-

vironment sound, silence, speech with noise background, etc. Fig. 4

illustrates the difference of K-L distances [9] calculated from non-

audio signal change samples and audio signal change samples.

4.2. Audio Signal Change Detection

Our task is to find whether there is an audio signal change at a candi-

date audio signal change position. We apply a metric based approach

and a model based approach respectively to examine audio signal

change. For the metric based approach, by the candidate audio sig-

nal change position as a time-stamp point, we choose two consecu-

tive audio segments of 2 second, one is before the time-stamp point,

the other is after the time-stamp point. The change detection is ac-

complished by examining the K-L distance between these two con-

secutive audio segments. The normal density function is currently

employed to estimate the probability distribution of 43-dimensional

audio features for each segment.

For the model based approach, The temporal information is in-

corporated with left to right Hidden Markov Model(HMM). Unlike

traditional audio content analysis methods, which classify audio sig-

nals into different categories and detect the transition between dif-

ferent categories [8, 2], we select a 4 second window centered at the

candidate audio signal change position and classify the 4 second time

series data into audio signal changes or non-audio signal changes by

supervised learning. The candidate audio signal change position is

an important time-stamp point where the hidden state may change

from one to another. For the audio signal change HMM, this hidden

state change represents variations from one kind of audio to another;

Hidden states

2 second 2 second

Candidate Audio change position

Observation

Audio Signal Change

Non-Audio Signal Change

Fig. 5. An HMM to model the audio signal change/non-audio signal

change

while in non-audio signal change HMM, this hidden state change

represents variance within the same kind of audio. Once the model

topology and observation vectors are determined, Baum-welch algo-

rithm is used for parameter estimation. Fig. 5 illustrates the structure

of an HMM prototype used in our framework.

5. AUDIOVISUAL ALIGNMENT

As discussed in Section 1, we know audiovisual alignment is an im-

portant procedure for video content analysis. For each visual signal

change position, we choose overlapping sliding windows to carry

out alignment to search candidate audio signal change positions.

As illustrated in Fig. 6, K-L distance metric is used to evaluate the

changes between successive audio analysis windows. Window size

is critical to good modeling. The difference curves in Fig. 7 have

indicated different locations of change peaks in the case of different

window sizes, which means the candidate audio signal change posi-

tion is not the same with different window sizes. Since one does not

know a priori what sound one is analyzing, a multi-scale difference

computing is used. That is, we first make use of different window

sizes to yield a set of difference sequences; each difference sequence

is then normalized to [0, 1] through dividing difference values by the

maximum of each sequence; the most likely audio signal change is

determined by locating the highest accumulated difference values

derived from the set of difference sequences. The probability p(ωi)
of each window position being the candidate audio signal change

position can be calculated as follow:

p(ωi) =
1

N

NX
scale=1

 
DistanceK−L(i)

max
1≤i≤M

(DistanceK−L(i))

!
(3)

p(θ) = max
i

(p(ωi)) (i = 1, . . . , M) (4)

where M is the total window position number, the position corre-

sponding to the probability p(θ) is the candidate audio signal change

position. As shown in Fig. 7, a set of uniform difference peaks asso-

ciated with the true audio signal change has been located with around

240 ms delay. According to offset statistics in Fig. 1, the shift of ad-

justed change point is currently confined to the range of [-500ms,

500ms] for balancing the advantage and disadvantage of time shift.

For the minimum window of 500 ms we have in total 499 samples

of 20 ms unit with a 10 ms overlap. At the sliding window level

an overlap of 100 ms has been uniformly employed for multi-scale

computing as shown in Fig. 6.

Once we get the candidate audio signal change positions, we fur-

ther extract audio feature and arrange audio features within adjusted

4 second windows. For comparing the metric based approach and

the model based approach, K-L distance metric and HMM model
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Fig. 7. 11 Curves of Kullback-Leibler distance differences between

two successive windows with an overlap of 100 ms wherein 11 dif-

ferent window sizes are applied. A is a set of uniform difference

peaks associated with the true audio signal change, around 240 ms

delayed; B is The initial audio signal change point(visual signal

change position) before adjustment.

are both used to examine audio signal changes and non-audio signal

changes. The visual and audio signal changes are finally associated

to form the scene change representations.

6. EXPERIMENT

The proposed algorithm is tested on TRECVID 2005 video data. The

data set is taken from 6 general channels: CNN, NBC, MSNBC,

LBC, CCTV4, NTDBC and includes 6 genres: news, commercial,

movie, sports, MTV, animation. Ground truth for audio signal changes

and visual signal change was manually labeled. Half is used for

training and half for testing.

In our experiment, the number of hidden states in the two HMM

models is 8, each state’s observation distribution is modeled by 12

Gaussian mixtures with 43 dimensional mean and 43 by 43 diago-

nal variance. Table 1 lists the result of visual signal change; Table

2 lists the result of metric based method and model based method,

including the comparisons before and after using audiovisual align-

ment. The audio segments comprise 2394 non-audio signal change

samples and 1932 audio signal change samples.

Table 1. Experiment results of visual signal change detection

precision recall Accuracy

Visual Signal Change 78.2% 83.5% 86.1%

After alignment, the results are improved by above 4 percent

both for metric based approach and model based approach. Com-

Table 2. Experiment results of audio signal change detection

alignment precision recall F1 Accuracy

K-L No 72.8% 76.6% 74.6% 79.8%

K-L Yes 76.7% 81.8% 79.2% 84.0%

HMM No 76.1% 80.5% 78.2% 83.6%

HMM Yes 79.5% 84.9% 82.1% 87.9%

pared with metric base symmetrized K-L distance, model based HMM

approach yield better performance.

To evaluate the mid-level scene change representation, we has

combined this representation with the so-called FMPI (Image Frames

Marked with Production Information) frames [5], black frames, si-

lence to detect individual commercial’s boundaries, A good detec-

tion accuracy of around 95 percent has been achieved.

7. CONCLUSION

We have proposed a mid-level scene change representation to bridge

the gap between low level audiovisual features and high level seman-

tic scene change. It is suggested to deal with audio signal change and

visual signal change jointly. The associated visual and audio signal

changes are considered as the scene change representation. When

the mid-level feature is combined with other features to detect indi-

vidual commercial boundaries, we get a promising accuracy of 95

percent, which proves its effectiveness. In future work, we will ap-

ply this mid-level scene representation to story segmentation in news

video and scenes classification in films.
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