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ABSTRACT

This paper explores the role of facial asymmetry in identifi-

cation tasks using a frequency domain representation. Satis-

factory results are obtained for two different tasks, namely,

human identification under extreme expression variations

and expression classification, using a PCA-type classifier

which establishes the robustness of these measures to intra-

personal distortions. We next demonstrate that it is possible

to even improve upon these results by simple means. In par-

ticular, we use two methods, namely, feature set combina-

tion and statistical resampling methods like bagging, which

attains perfect classification results (0% error rate) in some
cases. Both these methods require very few additional re-

sources in terms of computing power, hence they are useful

for practical applications as well.

1. INTRODUCTION

A commonly accepted notion in computer vision is that hu-

man faces are bilaterally symmetric ([1]) and [2] reported

no differences whatsoever in recognition rates while using

only the right and left halves of the face. However, a well-

known fact is that manifesting expressions cause a consid-

erable amount of facial asymmetry, they being more intense

on the left side of the face ([3]). Indeed [4] found differ-

ences in recognition rates for the two halves of the face un-

der a given facial expression.

Human faces have two kinds of asymmetry − intrinsic
and extrinsic. The former is caused by growth, injury and

age-related changes, while the latter is affected by external

factors such as viewing orientation and lighting direction.

Of the two, intrinsic asymmetry is more interesting since it

is directly related to the individual face structure while ex-

trinsic asymmetry can be controlled and removed to an ex-

tent by normalization. Psychologists have observed that the

more asymmetric a face, the less attractive it is ([5]). Fur-

thermore, the less attractive a face is, the more recognizable

it is ([6]). The role of asymmetry in automatic identification

was first studied by Liu ([7]), who investigated the role of

spatial intensity-based asymmetry features in human iden-

tification tasks. This was followed by more in-depth stud-

ies ([8], [9]) which further investigated the role of asym-

metry measures for human as well as expression classifica-

tions. The seminal work on using frequency domain rep-

resentation of facial asymmetry in automatic identification

was [10] which serves as a baseline for this work.

The paper is organized as follows. Section 2 describes
the dataset used. Section 3 introduces the frequency do-
main asymmetry representation along with identification re-

sults. Section 4 presents two simple techniques for improv-
ing classification performance of these features along with

the results, and finally a discussion appears in Section 5.

2. DATA

The dataset used is a part of the “Cohn-Kanade Facial Ex-

pression Database” ([11]), consisting of images of 55 in-
dividuals expressing three different emotions - joy, anger

and disgust. The data thus consist of video clips of people

showing an emotion, each clip being broken down into sev-

eral frames. The raw images are normalized using an affine

transformation, the details being included in [8]. Some nor-

malized images from our database are shown in Figure 1.

Fig. 1. Sample images from our database.

We use a total of 495 frames− 3 frames from each emo-
tion for each subject (55× 3× 3), same as that used in [10]
to facilitate comparison. These frames are chosen from the
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most neutral (the beginning frame), the most peak (the final

frame) and a middle frame in the entire sequence.

3. THE FREQUENCY DOMAIN

Many engineering applications in involve the frequency-domain

representation of signals. The frequency spectrum consists

of two components, the magnitude and phase. In 2D im-
ages particularly, the phase component captures more of the

image intelligibility than magnitude and hence is very sig-

nificant for performing image reconstruction ([12]). [13]

showed that correlation filters built in the frequency domain

can be used for efficient face-based recognition. Recently,

the significance of phase has also been used in identifica-

tion problems. [14] proposed correlation filters based only

on the phase component of an image, which performed as

well as the original filters. All these indicate the benefits of

considering classification features in the frequency domain

for potentially improved results.

Symmetry properties of the Fourier transform are often

very useful ([15]). Any sequence x(n) can be expressed as
a sum of a symmetric part xe(n) and an asymmetric part
xo(n). Specifically,

x(n) = xe(n) + xo(n),

where xe(n) = 1
2 (x(n) + x(−n)) and xo(n) = 1

2 (x(n) −
x(−n)). When a Fourier transform is performed on a real
sequence x(n), the even part (xe(n)) transforms to the real
part of the Fourier transform and the odd part (xo(n)) trans-
forms to its imaginary part (Fourier transform of any se-

quence is generally complex-valued). The Fourier trans-

form of a real and even sequence is thus real; that of a

real and odd sequence is purely imaginary. This implies

that the imaginary component of the Fourier transform can

therefore be considered as a measure of facial asymmetry

in the frequency domain and the real component a measure

of facial symmetry. However, these relations hold for one-

dimensional sequences alone, and hence we define asymme-

try features based on the Fourier transforms of row slices

of the images. This is intuitively clear because we are in-

terested in facial symmetry only in the horizontal direction

(left-right) which is preserved by 1D Fourier transforms. 2D

transforms create symmetry in a diagonal direction with re-

spect to the origin that destroys actual symmetry informa-

tion, and hence does not offer a valid representation.

3.1. The Asymmetry Biometric

Following the notion presented above, we define two asym-

metry biometrics for the images in our database as follows:

• I-face: frequency-wise imaginary components of Fourier
transforms of each row slice.

• R-face: frequency-wise real parts of the Fourier trans-
forms of the 1D row slices of the edged images Ie.

Both these feature sets are of the same dimension as the

original images (128×128 for our database). A higher value
of I-face signifies greater asymmetry between the two sides

of a face whereas a higher R-face value signifies greater

symmetry between the edges on the two sides of the face

(“edged” images computed using a standard edge-detection

algorithm). However, one half of both I-faces and R-faces

contain all the relevant information owing to symmetry prop-

erties (I-face has the samemagnitude but opposite sign across

the face midline while R-face has both the same magnitude

and sign on the two sides).

3.2. Identification Results

Of the different classification methods tried (includingLDA,

Fisher faces, SVM), the best results are obtained with the in-

dividual PCA (IPCA) approach ([16]). The IPCA method is

different from the global PCA approach ([17]) where a sub-

spaceW is computed from all the images regardless of iden-
tity. In individual PCA, on the other hand, subspacesWp are

computed for each person p and each test image is projected
onto each individual subspace using yp = WT

p (x − mp).
The image is then reconstructed as xp = Wpyp + mp and

the reconstruction error is computed as: ||ep||2 = ||x −
xp||2. The final classification chooses the subspace with the
smallest ||ep||2.
For human identification, the training is done on the

neutral frames of the 3 emotions of joy, anger and disgust
from all the 55 individuals in the dataset and testing on the
peak frame of all the 3 emotions from all the people. For
expression classification, we train on the peak expression

frames for a randomly selected subset of 30 individuals and
test on those from the remaining 25 individuals. This is
repeated 20 times and the final error rates are obtained by
averaging over those from these 20 repetitions. The results
appearing in Table 1 are fairly good although there seems

to be plenty of room for improving upon their performance,

an issue we explore in the next section. The I-faces perform

better than the R-faces for both identification problems.

Features Human Identification Expression Classification

I-face 3.64% 26.93% (4.18%)

R-face 10.30% 27.07% (6.36%)

Table 1. Misclassification rates using asymmetry measures.

4. IMPROVING CLASSIFICATION
PERFORMANCE

Given the sensitive nature of applications of face recogni-

tion technology today, say in homeland security, it is desir-
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able to have as accurate algorithms as possible. Hence in

this section, we focus our effort to attain as near perfect per-

formance (100% accuracy) as possible with the help of two
different but simple techniques: (i) combination of feature
sets, and (ii) use of statistical resampling methods.

4.1. Feature Set Combination

Here, we concatenate the I-faces and the R-faces to yield a

two-dimensional feature vector per frequency and perform

both human identification and expression classification in

the same way as before. The idea was to investigate if the

two sets of features could complement each other and result

in improved performance. The results in Table 2 clearly

show that improvement occurs in their performances for

both classification tasks. For human identification, the R-

face results improve significantly whereas the amount of im-

provement in the I-face results is not that significant which

is expected given the already good results from using them

alone. As to expression classification, both the feature sets

show significant improvements as a result of the combina-

tion. The relative improvement figures shown in Table 3 are

calculated as Imp. = Individual error rate - Combined error rate
Individual error rate

×
100. We consider this instead of absolute improvement fig-
ures because this gives a more realistic idea of the actual

gain, since it is much harder to improve upon an error rate

of 1% than one of 15%. This fact is reflected in the relative

rates in a more precise manner.

Classification Error rates

Human 2.78%

Expression 18.90%

Table 2. Error rates for feature set combination I-face+R-
face.

Classification Imp. for I-face Imp. for R-face

Human 23.63% 73.01%

Expression 29.82% 30.18%

Table 3. The improvements rates for feature set combina-
tions over the individual feature sets.

4.2. Bagging

Statistical resampling methods are well-known as effective

means of improving performance of several classifiers in a

fairly simple way. Two different resampling methods are

used - Bagging and Random Subspace Method (RSM), and

we apply these to the individual feature sets as well as to

their combinations.

Bagging was introduced as a method for increasing the
accuracy of unstable predictors, that is, if results from the

underlying predictor are significantly affected by small per-

turbations of the training set ([18]). On the other hand, it is

less effective if the underlying predictor is sufficiently sta-

ble, and can even do worse in such a scenario. According to

[19], linear classifiers built on large training sets are stable.

Hence, when the training sets are large, bagging will not

improve results for them. Bagging is useless for very small

training samples as well, since small training sets often rep-

resent the actual distribution poorly and the resultant classi-

fiers are likely to be equally poor. However, when the train-

ing sample size is “critical” (the number of training samples

is comparable to the number of features), linear classifiers

can be quite unstable. So bagging linear classifiers such as

PCA might be beneficial for high-dimensional data in gen-

eral, which prompts us to apply this to our problem at hand.

The methodology of bagging consists of generating in-

dependent replications with replacement from the given train-

ing set and developing a classifier based on each of the boot-

strap samples by treating them as separate training sets. The

final results are obtained by aggregating the results from the

replication by a simple majority voting rule. The number of

replications is application-dependent and needs to be cho-

sen suitably by the user.

We apply the procedure of bagging only to the human

identification problem for the time being, but we wish to

extend this to expression classification in a similar way. We

use different number of replications for all the feature sets

using IPCA as the base classifier, and the entire resampling

procedure for each replication size is repeated 20 times (to
remove selection bias) so that the final bagging errors are

obtained by averaging over these 20 iterations. Figure shows
how the bagging errors for human identification based on I-

faces, of which the optimal number of replication is chosen

to be 150 (that produce the lowest error rate). Note that
this is considerably higher than the convention of 50 repli-
cation used in most statistical applications, the reason be-

ing that our feature sets are much higher dimensional than

most standard statistical problems. The figures for the other

feature sets are not included for space constraints. Table 4

shows the final bagging errors along with the relative im-

provements computed in the same way as for the feature set

combinations for all the feature for human identification.

100% classification accuracy is obtained with the I-faces
and the combination of I-faces and R-faces, and significant

improvement (close to 90%) was also acheived for the R-
faces.

I-faces R-faces I-faces+R-faces

Errors 0% 1.25% 0%

Improv. 100% 87.86% 100%

Table 4. Final bagging errors and the relative improvements
for the three feature sets for human identification.
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Fig. 2. Bagging errors for different replication sizes for hu-
man identification using the I-faces. The red dashed line

shows the pre-bagging error rate of 3.64%.

5. DISCUSSION

We have thus shown in this paper that facial asymmetry

measures in the frequency domain offer a promising po-

tential as an useful biometric in practice, especially, in the

presence of expression variations in face images. The ini-

tial results were further improved by the use of two sim-

ple methods of feature set combination and the statistical

method of bagging. The latter was especially effective and

produced 100% classification accuracy. This is a tremen-
dous achievement and thus this method should be very use-

ful in practical applications that seek accurate algorithms,

such as in biometric identification including surveillance in

airports. Also the implementation of both these techniques

are very straightforward and requires very few additional re-

sources and hence these are attractive from the viewpoint of

practical viewpoint. Finally, these tools also helped demon-

strate the true potential of these frequency-based asymmetry

features in identification tasks.

The next direction of research will consist of applying

bagging to expression classification, exploring other resam-

pling methods like Random Subspace method (RSM; [20])

and boosting. We also wish to investigate the robustness of

these frequency domain asymmetry features to other types

of distortions like illumination, and extension to a larger

database.
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