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ABSTRACT

In this paper, we proposed a new Two-Dimensional Linear
Discriminant Analysis (2DLDA) method. Based on Two-
Dimensional Principle Component Analysis (2DPCA), face
image matrices do not need to be previously transformed into
a vector. In this way, the spatial information can be pre-
served. Moreover, the 2DLDA also allows avoiding the Small
Sample Size (SSS) problem, thus overcoming the traditional
LDA. We combine 2DPCA and our proposed 2DLDA on the
Two-Dimensional Linear Discriminant Analysis of principle
component vectors framework. Our framework consists of
two steps: first we project an input face image into the fam-
ily of projected vectors via 2DPCA-based technique, second
we project from these space into the classification space via
2DLDA-based technique. This does not only allows further
reducing of the dimension of feature matrix but also improv-
ing the classification accuracy. Experimental results on ORL
and Yale face database showed an improvement of 2DPCA-
based technique over the conventional PCA technique.

1. INTRODUCTION

In face recognition, the linear subspace techniques, such as
Principal Component Analysis (PCA) and Linear Discrimi-
nant Analysis (LDA) are the most popular ones [1, 2, 3, 4,
5]. The PCA’s criterion chooses the subspace in the function
of data distribution while LDA chooses the subspace which
yields maximal inter-class distance while keeping the intra-
class distance small. Both techniques intend to project the
vector representing face image onto lower dimensional sub-
space, which the 2D face image matrices must be previously
transformed into vectors and then concatenated into a matrix.
This is the cause of three serious problems in particular ap-
proaches. First of all, the feature vectors with high dimen-
sion will leads to the curse of dimensionality. Secondly, the
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spatial structure information could be lost. Finally, in face
recognition task, the available number of training samples is
relatively very small compared to the feature dimension that
is the cause of the Small Sample Size (SSS) problem.

Various solutions have been proposed for solving the SSS
problem [3, 4, 5, 6, 7, 8]. Among these LDA extensions, the
discriminant analysis of principle components framework [3,
4, 5] demonstrates a significant improvement when apply Lin-
ear Discriminant Analysis (LDA) over principle components
from the PCA-based subspace. Since both PCA and LDA can
overcome the drawbacks of each other. PCA is constructed
around the criteria of preserving the data distribution. Hence,
it is suited for face representation. However, in the classifi-
cation tasks, PCA only give the orthonormal transformation
of original features. This can be used, along with eigenval-
ues, to whiten the distribution. Nevertheless, this transfor-
mations do not take into account the between classes rela-
tionship. In general, the discriminatory power depends on
both within and between classes relationship. LDA considers
this relationship via scatter matrices analysis of within and
between-class scatter matrices. Taking this information into
account as in LDA allows further improvement. Especially,
when there are prominent variation in lighting condition and
expression. However, LDA has certain two drawbacks when
directly applied to the original input space [5]. First of all,
some non-face information such as image background are re-
garded by LDA as the discriminant information. This causes
misclassification when the face of the same subject is pre-
sented on different background. Secondly, when SSS prob-
lem has occurred, the within-class scatter matrix be singular,
so-called the singularity problem. Projecting the high dimen-
sional input space into low dimensional subspace via PCA can
solve these LDA problems. Nevertheless, the spatial structure
information still be lost.

Recently, an original technique called Two-Dimensional
Principal Component Analysis (2DPCA) was proposed [9],
in which the image covariance matrix is computed directly on
image matrices so the spatial information can be preserved.
This yields a covariance matrix whose dimension equals to
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the width of face image. This is far smaller than the real
size of face image. Therefore, the image covariance matrix
can be better estimated and relieved the SSS problem. Evi-
dently, the experimental results in [9] shown the improvement
of 2DPCA over PCA on several face databases. However, like
PCA, 2DPCA is prefer face representation to face recogni-
tion. For better performance of recognition task, LDA is nec-
essary. Unfortunately, the linear transformation of 2DPCA
reduces only the number of columns. The number of rows
still equal to the original image. Thus, the SSS problem will
be appeared when LDA is performed after 2DPCA directly.
In order to overcome this problem, we propose a modified
LDA, called Two-Dimensional Linear Discriminant Analysis
(2DLDA),
based on the 2DPCA concept. Applying 2DLDA to 2DPCA
not only can solves the SSS problem and the curse of dimen-
sionality dilemma but also allows working directly on the im-
age matrix in all projections. Hence, spatial structure infor-
mation is maintained and the size of all scatter matrices just
equal to the width of face image. Furthermore, the face im-
age do not need to be resized, thus all information still be
preserved.

In this paper, we will show that there are the biased PCAs
were embedded in 2DPCA so it does not surprise that why
2DPCA is better than only one PCA. And we will show how
to put the idea of 2DPCA under the LDA’s criterion. More-
over, following to the previous works on this field [3, 4, 5], a
combination framework of 2DPCA and 2DLDA is also eval-
uated. The accuracy of this proposed framework is demon-
strated on real world face databases. The experimental results
can promise the performance of our proposed framework.

2. 2DPCA

2.1. Basic Idea

In 2DPCA [9], the image covariance matrix G was defined as

G = E[(A − EA)T (A − EA)], (1)

where A represents the face image. This is much smaller than
the size of real covariance matrix needed in PCA, therefore
can be computed more accurately on small training set. Given
a database of M training image matrices Ak, k = 1, . . . , M
with same dimension m by n. The matrix G is computed in a
straightforward manner by

G =
1
M

M∑
k=1

(Ak − Ā)T (Ak − Ā), (2)

where Ā denotes the average image, Ā = 1
M

∑M
k=1 Ak.

Let x1, . . . ,xd be d selected largest eigenvectors of G.
Each image A is projected onto these d dimensional sub-
space. The projected image Y is then an m by d matrix given
by Y = AX where X = [x1, . . . ,xd] is a n by d projection
matrix.

2.2. Comparisons of PCA and 2DPCA

The sketch for the reason that why 2DPCA is better than PCA
should lie on the answer of the following question: What is
happen when the inputs of PCA are the rows of each image
instead of entire images?

Let {Γ1,Γ2,Γ3, . . . ,Γn} be the set of rows of an im-
age A and Ψ = 1

n

∑n
i=1 Γi is the average of this set. The

i-th row differ from the average by the vector Φi = Γi −
Ψ. Therefore, the covariance matrix C of PCA is given by
C = 1

n

∑n
i=1 ΦiΦT

i = 1
nΥΥT , where the matrix Υ =

[Φ1 Φ2 . . . Φn]. Following Eigenface’s algorithm [2], the
optimal projection vectors can be determined as the eigen-
vectors of matrix ΥT Υ. If zero mean, Ψ = 0, the image
covariance matrix G in Eq. (1) can be rewritten as

G = E[(Υ − EΥ)T (Υ − EΥ)] = E[ΥT Υ] − β, (3)

where β = EΥT EΥ. From this point, 2DPCA can be ex-
plained in a novel perspective as a collection of biased PCAs.
Indeed, the number of training samples of conventional PCA
is only M while the number of training samples of 2DPCA is
M ×m. Since the dimension of G is n×n with n < M ×m,
thus 2DPCA can provide the full rank image covariance ma-
trix. This is the reason of the improvement of 2DPCA over
the original PCA.

3. THE PROPOSED 2DLDA

Let Z be an n by q matrix. A matrix A is projected onto
Z via the linear transformation, V=AZ. In this 2DLDA, we
search for the projection matrix Z maximizing the Fisher’s
discriminant criterion [3]:

J(Z) =
tr (Sb)
tr (Sw)

, (4)

where Sw is the within-class scatter matrix and Sb is the
between-class scatter matrix. The within-class scatter matrix
describes how data are scattered around the means of their re-
spective class, Sw =

∑K
i=1 Pr(ωi)E

[
(HZ)(HZ)T |ω = ωi

]
,

where k is the number of classes, Pr(ωi) is the prior prob-
ability of each class, and H = A − EA. The between-
class scatter matrix describes how different classes, repre-
sented by their expected value, are scattered around the mix-
ture means by Sb =

∑K
i=1 Pr(ωi)E

[
(FZ)(FZ)T

]
, where

F = E[A|ω = ωi] − E[A]. Using the linearity of both the
trace function and the expectation, J(Z) may be rewritten as

J(Z) =
tr(

∑K
i=1 Pr(ωi)E

[
(FZ)(FZ)T

]
)

tr(
∑K

i=1 Pr(ωi)E [(HZ)(HZ)T |ω = ωi])

=
tr

(
ZT

(∑K
i=1 Pr(ωi)E

[
FT F

])
Z

)

tr
(
ZT

(∑K
i=1 Pr(ωi)E

[
HT H|ω = ωi

])
Z

)

=
tr(ZT S̃bZ)
tr(ZT S̃wZ)

. (5)
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And S̃b and S̃w can be evaluated as follow

S̃b =
K∑

i=1

ni

K
(Āi − Ā)T (Āi − Ā) (6)

S̃w =
K∑

i=1

ni

K

∑
Ak∈ωi

(Ak − Āi)T (Ak − Āi), (7)

where ni and ωi, Āi are the number of elements and the ex-
pected value of class ωi, respectively. Then the optimal pro-
jection vector can be found by solving the following general-
ized eigenvalue problem, S̃bZ = S̃wΛZ, where Λ is a diago-
nal matrix with eigenvalues on the main diagonal. Note that,
the size of scatter matrices involved in eigen decomposition
is only n by n. Thus with the limited training set, this decom-
position is more reliably than the decomposition on classical
covariance matrix.

4. 2DLDA OF 2DPCA

The discriminant analysis of principle components framework
in [4] is applied in this section. Our framework consists of
2DPCA and 2DLDA step. From Section 2, we obtain a lin-
ear transformation matrix X on which each input face image
A is projected. From this 2DPCA step, a feature matrix Y is
obtained. This matrix Y is used as the input of 2DLDA step.
Thus, the evaluation of within and between-class scatter ma-
trices in this step will be slightly changed. From (6) and (7),
image matrix A is substituted for the 2DPCA feature matrix
Y as follows

S̃
Y

b =
K∑

i=1

ni

K
(Ȳi − Ȳ)T (Ȳi − Ȳ) (8)

S̃
Y

w =
K∑

i=1

ni

K

∑
Yk∈ωi

(Yk − Ȳi)T (Yk − Ȳi) (9)

where Yk is the feature matrix of the k-th image matrix Ak,
Ȳi be the average of Yk which belong to class ωi and Ȳ de-
notes a overall mean of Y, Ȳ = 1

M

∑M
k=1 Yk. The 2DLDA

optimal projection matrix Z should be obtained via solving
the eigenvalue problem in Section 3. Finally, the composite
linear transformation, D=AXZ, is used to map the face image
space into the classification space. The matrix D is 2DLDA
of 2DPCA feature matrix of image A with dimension m by q.
However, the number of 2DLDA feature vectors q cannot ex-
ceed the number of principle component vectors d. In general
case (q < d), the dimension of D is less than Y in Section 2.
Thus, 2DLDA of 2DPCA can reduce the classification time
compared to 2DPCA.

A nearest neighbor classifier is used for classification as
the one used in 2DPCA [9].

5. EXPERIMENTAL RESULTS

The two well-known Yale1 and ORL2 database are used in
all experiments. The Yale database contains 165 images of
15 subjects. There are 11 images per subject, one for each
of the following facial expressions or configurations: center-
light, with glasses, happy, left-light, without glasses, normal,
right-light, sad, sleepy, surprised, and wink. Each image was
manually cropped and resized to 100 × 80 pixels. The ORL
database contains images from 40 individuals, each provid-
ing 10 different images. For some subjects, the images were
taken at different times. The facial expressions open or closed
eyes, smiling or non smiling and facial details (glasses or no
glasses) also vary. The images were taken with a tolerance
for some tilting and rotation of the face of up to 20 degrees.
Moreover, there is also some variation in the scale of up to
about 10 percent. All images are gray scale and normalized
to a resolution of 112 × 92 pixels.

To investigate the effect of number of feature vectors, we
vary the number of principle component vectors d and the
number of 2DLDA feature vectors q from 1 to 30 on both
databases because the highest recognition accuracy lie in this
interval. On Yale database, the five image samples (centerlight,
glasses, happy, leftlight, and noglasses) are used to train, and
the six remaining images for test. And the first five image
samples are used to train per class, and the six remaining im-
ages for test on ORL database. Fig. 1 (a) and (b) show the
relationship between recognition accuracy and the number of
feature vectors of 2DPCA, 2DLDA, and 2DPCA+2DLDA on
Yale and ORL database respectively. It should be note that the
performance of 2DPCA+2DLDA actually depends on both
principle component vectors and 2DLDA feature vector, as
shown in Fig. 1 (c) and (d). Therefore, for comparison rea-
son, we plot the top recognition of Fig. 1 (c) and (d), in the
direction of the number of 2DLDA feature vectors axis, in
Fig. 1 (a) and (b), respectively. The results of pure 2DLDA
are in agreement with pure LDA. That is the pure 2DLDA
method includes the information which not useful for classifi-
cation as its discriminant information. The 2DPCA+2DLDA
method can achieve higher recognition rate than other meth-
ods. Table 1 and 2 show the comparisons of 3 methods on the
highest recognition accuracy. In all experiments, The recog-
nition rate of 2DPCA+2DLDA was superior to 2DPCA and
2DLDA. Especially, 2DPCA+2DLDA use only 7 feature vec-
tors while 2DPCA use 23 principle component vectors to ob-
tain the highest recognition rate on Yale database. In case of
ORL database, 2DPCA+2DLDA obtain the highest recogni-
tion rate more than 2DPCA in same dimension.

Furthermore, since the number of feature vectors in case
of 2DPCA+2DLDA must be less or equal to the number of
principle component vectors of 2DPCA in the first step, so

1The Yale database is available for download from http://cvc.yale.edu
2The ORL database is available for download from http://www.cam-

orl.co.uk
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Table 1. The top recognition accuracy comparisons of 2DPCA, 2DLDA and 2DPCA+2DLDA on Yale database
Method Accuracy (%) d q Dimension Training time Classification time Overall time
2DPCA 87.78 23 N/A 100 × 23 1 (0.17 s) 1 (3.14 s) 1 (3.31 s)
2DLDA 88.89 N/A 14 100 × 14 0.94 (0.16 s) 0.62 (1.94 s) 0.63 (2.10 s)

2DLDA+2DPCA 90 21 7 100 × 7 1.14 (0.24 s) 0.32 (1.01 s) 0.38 (1.25 s)

Table 2. The top recognition accuracy comparisons of 2DPCA, 2DLDA and 2DPCA+2DLDA on ORL database
Method Accuracy (%) d q Dimension Training time Classification time Overall time
2DPCA 91.5 5 N/A 112 × 5 1 (0.33 s) 1 (4.33 s) 1 (4.688 s)
2DLDA 90.5 N/A 3 112 × 3 1.51 (0.50 s) 0.64 (2.75 s) 0.7 (3.281 s)

2DLDA+2DPCA 93.5 14 5 112 × 5 1.94 (0.64 s) 1 (4.33 s) 1.07 (5.219 s)

the time consumed for classification can be reduced.
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(c) 2DPCA+2DLDA on Yale
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(d) 2DPCA+2DLDA on ORL

Fig. 1. Recognition accuracy of 2DPCA, 2DLDA and
2DPCA+2DLDA.

6. CONCLUSIONS

In this paper, we proposed a Two-Dimensional Linear Dis-
criminant Analysis (2DLDA) for face recognition based on
2DPCA concept. All scatter matrices in 2DLDA are much
smaller and compute eigenvectors easier than LDA techniques.
The SSS problem of within-class scatter matrix is relieved
within the 2DLDA framework. By using 2DLDA of principle
component vectors framework, 2DLDA can improved a per-
formance over 2DPCA in face recognition task, as shown in
all our experimental results on the well-known face databases.

7. REFERENCES

[1] L. Sirovich and M. Kirby, “Low-dimensional procedure
for characterization of human faces,” J. Optical Soc. Am.,
vol. 4, pp. 519–524, 1987.

[2] M. Turk and A. Pentland, “Eigenfaces for recognition,” J.
of Cognitive Neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[3] P. Belhumeur, J. Hespanha, and D. Kriegman,
“Eigenfaces vs. Fisherfaces: Recognition using class
specific linear projection,” IEEE Trans. Pattern Anal.
and Mach. Intell., vol. 19, pp. 711–720, July 1997.

[4] W. Zhao, R. Chellappa, and A. Krishnaswamy, “Discrim-
inant analysis of principle components for face recogni-
tion,” Japan, 1998, IEEE 3rd Inter. Conf. on Automatic
Face and Gesture Recognition.

[5] W. Zhao, R. Chellappa, and N. Nandhakumar, “Empirical
performance analysis of linear discriminant classifiers,”
in CVPR. 1998, pp. 164–171, IEEE Computer Society.

[6] L. Chen, H. Liao, M. Ko, J. Lin, and G. Yu, “A new LDA
based face recognition system which can solve the small
sample size problem,” Pattern Recognition, vol. 33, no.
10, pp. 1713–1726, 2000.

[7] J. Lu, K. Plataniotis, and A. Venetsanopoulos, “Regular-
ized discriminant analysis for the small sample size prob-
lem in face recognition,” Pattern Recogn. Lett., vol. 24,
no. 16, pp. 3079–3087, 2003.

[8] R. Huang, Q. Liu, H. Lu, and S. Ma, “Solving the small
sample size problem of LDA,” Pattern Recognition, vol.
3, pp. 29–32, 2002.

[9] J. Yang, D. Zhang, A. Frangi, and J. Y. Yang, “Two-
dimensional PCA: A new approach to appearance-based
face representation and recognition,” IEEE Trans. Pattern
Anal. and Mach. Intell., vol. 26, pp. 131–137, Jan. 2004.

II ­ 348


