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ABSTRACT

A novel family of geometrically invariant features, called

summation invariants are proposed for the recognition of the

3D surface of human faces. In particular, a 2D semi-local

summation invariant feature is extracted from each column

and each row of a rectangular region surrounding the nose of a

3D facial depth map. Through extensive experimentation, we

empirically identify the most efficient 2D summation invari-

ant features. We also investigate the proper pre-processing

method for the 2D summation invariant features. Tested with

the 3D facial data from the Face Recognition Grand Chal-

lenge v1.0 dataset, the proposed new features exhibit signif-

icant performance improvement over the baseline algorithm

distributed with the dataset.

1. INTRODUCTION

Human face recognition has received unprecedented interest

in recent years [1, 2]. However, rigorous tests with real-world

data such as FERET, FRVT have revealed many shortcom-

ings of existing approaches [3, 4]. In short, for large scale,

real world situations, current systems still cannot deliver the

performance needed for practical applications.

A majority of current face recognition approaches make

use of 2D frontal facial texture features. Nonetheless, fa-

cial texture features are sensitive to lighting, pose, distance,

age (temporal) variations, and can easily be altered through

simple make-up efforts. On the other hand, from 3D facial

surfaces, one may exploit features that are invariant to ap-

pearance variations. For example, the facial surface around

cheek bones or the nose would remain unchanged under vary-

ing lighting conditions, are less likely to change due to aging,

and are seldom covered with hairs. Hence, in this research,

we focus on exploiting invariant features extracted from 3D

facial surfaces.

Invariants for transformation groups play an important role

in computer vision. Classical differential invariants such as

curvature depend on derivatives that may be very sensitive to

noise [5, 6]. Several approaches such as the semi-differential
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invariant introduced in [7, 8], integral invariant [9], and affine

quasi-invariant arc-length [10] have been proposed. These in-

variants are defined on continuous functions. When applied

to digitized object descriptions of contours or surfaces, nu-

merical approximation will be needed and the results can be

affected significantly by step size and other detailed settings.

Recently [11], we introduced a general method to gener-

ate invariants that are weighted summations of discrete data,

as analogues to integral ones. Since these invariants are de-

fined explicitly on discrete data, they do not require com-

putationally intensive numerical integration to compute and

will not be affected by the choice of step size. On the other

hand, using weighted summation to compute the summation

invariant will greatly reduce the impact of noise and hence

promises higher signal to noise ratio for the computed invari-

ant features. Specifically, in [11], we proposed a semi-local

summation invariant feature for two-dimensional (2D) closed

contours. It delivers superior performance compared to those

produced using integral invariants or wavelet invariant fea-

tures.

In this paper, we exploit the feasibility of applying 2D

summation invariant feature for 3D facial range images classi-

fication. Several key design issues are addressed: (a) To iden-

tify, among many possible variations of 2D summation in-

variant features in the family, those features that yield highest

performance. (b) To investigate the impacts of various prepro-

cessing methods, including scaling and normalization on the

proposed invariant features. (c) To explore proper feature re-

duction methods that will enhance the computation efficiency.

In addition to analytical derivations, we have conducted ex-

tensive experiments using the Face Recognition Grand Chal-

lenge v1.0 dataset and the BEE (Biometric Experiment En-

vironment) package. Compared to the best performance ob-

tained using the FRGC [12] 3D baseline algorithm, the pro-

posed features yield significant performance improvement.

The rest of this paper is organized as follows. Section 2

describes the summation invariant. Section 3 illustrates our

algorithm in detail. In Section 4, we present the experimental

results and compare them with those of the FRGC 3D baseline

algorithm. Finally, Section 5 summarizes our contributions

and provides an overview of future directions.
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2. SUMMATION INVARIANTS

The method of moving frames [5, 6], originally introduced by

Élie Cartan, is a powerful tool for constructing invariants un-

der group actions. For expression-neutral face images, pose

variations may be well modeled with Euclidean geometrical

transformations. In this paper, we will use profile curves ob-

tained by slicing 3D facial surfaces. Hence, we will focus on

deriving novel invariants for the Euclidean group acting on

R
2. This is similar to our recent work deriving summation

invariants for the affine transformation group [11].

Given a curve (x[n], y[n]) with n = 0, 1, . . . , N − 1, we

use (x̄[n], ȳ[n]) to denote this curve under Euclidean transfor-

mations.[
x̄[n]
ȳ[n]

]
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

] [
x[n]
y[n]

]
+

[
a

b

]

and we can find a moving frame by solving the following

equations.

(x̄[0], ȳ[0], ȳ[N − 1]) = (0, 0, 0)

From the moving frame, a family of invariant functions can

be derived. We define the invariant functions ηi,j as below

ηi,j =

N−1∑
n=0

x̄i[n]ȳj [n]

where i, j ∈ N. The first and second order invariant functions,

i.e. i + j = 1 or 2, have been explicitly derived as shown

below:

η1,0 = P1,0(x1 − x0) + P0,1(y1 − y0)

+Nx0(x0 − x1) + Ny0(y0 − y1)

η0,1 = P1,0(y1 − y0) + P0,1(x0 − x1)

+N(x1y0 − x0y1)

η2,0 = −2P1,0(x0 − x1)(x
2

0
− x0x1 + y2

0
− y0y1)

−2P0,1(y0 − y1)(y
2

0
− y0y1 + x2

0
− x0x1)

+P2,0(x0 − x1)
2 + P0,2(y0 − y1)

2

+2P1,1(x0 − x1)(y0 − y1)

+N(x0(x0 − x1) + y0(y0 − y1))
2

η1,1 = P1,1((x0 − x1)
2 − (y0 − y1)

2)

+P1,0(y
3

0
+ 2x0x1y1 − 2y1x

2

0

+x2

0
y0 − 2y2

0
y1 + y0y

2

1
− x2

1
y0)

−P0,1(x
3

0
+ 2y0y1x1 − 2x1y

2

0

+y2

0
x0 − 2x2

0
x1 + x0x

2

1
− y2

1
x0)

+(P0,2 − P2,0)(x0 − x1)(y0 − y1)

+N(x1y0 − x0y1)(x0(x1 − x0) + y0(y1 − y0))

η0,2 = 2(x1y0 − x0y1)(P1,0(y1 − y0) − P0,1(x1 − x0))

+P2,0(y0 − y1)
2 + P0,2(x0 − x1)

2

−2P1,1(x0 − x1)(y0 − y1) + N(x0y1 − x1y0)
2

where x0 = x[0], x1 = x[N − 1], y0 = y[0], y1 = y[N − 1],
and

Pi,j =
N−1∑
n=0

xi[n]yj [n].

The summation invariant is defined over a segment of any

2D curve under Euclidean transformation group action. In

order to enhance the discriminating power of this feature, we

have [11] proposed a semi-local summation invariant feature

that evaluates an invariant function for each pixel of the curve

over a local window surrounding that pixel. As such, a curve

consisting of N pixels will generate a feature vector of the

same length.

3. APPLICATION TO 3D FACE RECOGNITION

3.1. 3D face dataset and BEE

We use the Face Recognition Grand Challenge (FRGC) dataset

[12] to conduct face recognition experiments. FRGC is spon-

sored by the US National Institute of Standard and Technol-

ogy (NIST) and other government agencies. Its testing data

contains comprehensive 3D range images of human faces. It

also provides an XML-based framework to document and de-

scribe computation experiments called the Biometric Experi-

mentation Environment (BEE). All our experiments are con-

ducted using BEE.

The 3D data provided by FRGC v1.0 contains 275 sub-

jects (1 to 8 range scans per subject) and a total of 943 range

scans. Each range scan has a resolution of 640 × 480 pixels.

It contains both a 2D texture image and a 3D range data. In

this paper, we use only the 3D range data in all experiments.

3.2. Procedures

FRGC defines four experiments, among which experiment 3

concerns the 3D face recognition task. Our experiment pro-

cedures follow closely what has been defined for the baseline

algorithm provided by FRGC except for the following modifi-

cations. Details of experiment 3 are omitted here due to space

limitation.

1. Use 3D data only: In order to focus only on 3D face

recognition performance, the decision fusion part in ex-

periment 3 is disabled so that 2D texture results are not

included.

2. Specify the region of interest: Instead of using the whole

3D range face as the baseline algorithm does in BEE,

we extract invariant features from an N ×N (N = 81)

rectangular region centered at the nose tip. An example

is shown in Figure 1.

3. Alignment refinement: In FRGC, the location of the

nose tip is manually selected. We use the provided nose
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Fig. 1. Normalized depth map and an 81×81 region centered

at the nose tip.

tip location to define an initial N ×N region. The sum-

mation invariants computed from the N × N region

is called the summation image. For all the normalized

range data, we compute their summation images from

the initial region and find their average image, called

the mean of summation images. Then, for each normal-

ized range data, we find a new N × N region which

has minimal SSD (sum of squared differences) with the

mean of summation images and compute a summation

invariant from the new region. This procedure leads to

more accurate alignment of range data.

4. Arc-length resampling : Range data are resampled uni-

formly with respect to arc-length. Specifically, for each

row on a range data, we first compute its arc-length and

resample it uniformly with respect to arc-length. Then,

we perform the same resampling on each column.

5. Semi-local summation invariants: While the baseline

algorithm uses 3D range data directly, we extract a semi-

local summation invariant from each row and each col-

umn of the 81 × 81 rectangular region and use the re-

sults as invariant features. The length of the local win-

dow surrounding each pixel for calculating the semi-

local invariant is chosen to be L = 21.

Then, we perform PCA on the resulting invariant features.

4. EXPERIMENTAL RESULTS

We have conducted a series of experiments to assess the per-

formance of the proposed algorithm. In our experiments, we

choose N = 81, L = 21 and Mahanolibis cosine as distance

measure.

4.1. Effects of different summation invariants

In this experiment, we compare the ROC performance of dif-

ferent summation invariants. From the ROC curves in Fig 2,

it is apparent that not all semi-local summation invariants are

created equal in terms of discriminating power.
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Fig. 2. ROC performance for different summation invariants.

4.2. Effects of difference scaling of x and y coordinates

Recall that the summation invariants developed in section 2

are for the Euclidean group acting on R
2. While this feature is

invariant to Euclidean transformations, it will be affected by

improper scaling of coordinates. In the baseline algorithm,

x and y coordinates in the range data are discarded. In our

method, however, we need to retain these pieces of informa-

tion. We experimented with different values of increments,

dx = dy ∈ {0.4, 0.6, 0.8, 1.0}, and a fixed scaling factor 12.5
on z values. In Figure 3, we observe a significant impact of

these changes on the ROC curve. In general, better recogni-

tion performance is expected if the original x, y, z information

is preserved. In this experiment, only the summation invariant

η0,1 is used.

4.3. Comparison with FRGC 3D baseline algorithm

In this section, we conduct three experiments to evaluate the

performance of our algorithm and the FRGC 3D baseline al-

gorithm. In the first, we simply run the FRGC 3D baseline

algorithm. In the second, we still run the FRGC 3D base-

line algorithm but using only the cropped region rather than

the whole normalized range data. In Fig 4, the second ex-

periment shows a lower recognition rate than the first one.

This is reasonable because the second experiment uses less

data to perform recognition. In the third experiment, we use

η1,1 and apply our algorithm on the cropped region. Our al-

gorithm yields the highest recognition rate as one can see in

Fig 4. The results clearly indicate that summation invariants

offer statistically significant better recognition performance

than the range data itself. Note that these three experiments

use exactly the same PCA parameters, dropping the first 10
eigenvectors and using the following 100 eigenvectors.
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Fig. 3. ROC performance for using different unit difference

on the x and y coordinates.

5. CONCLUSION

The value of summation invariants in the context of 3D face

recognition is evaluated in this paper. We compute summation

invariants from the nose region of a face as it has prominent

shape changes. Compared with the FRGC 3D baseline algo-

rithm, our algorithm obtains higher recognition performance.

Furthermore, such good performance can be achieved using

only the nose portion of the whole face. In general, the results

support the conclusion that summation invariants extract use-

ful information for recognition purposes. The combination

of different summation invariants is expected to yield higher

recognition performance. We are currently in the process of

testing different decision fusion rules.
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