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ABSTRACT
The accurate registration of images observed in additive noise is a

challenging task. The noise increases the number of misregistered

regions, and decreases the accuracy of subpixel registration. To ad-

dress this problem, we propose an intensity-based algorithm that per-

forms registration based only on regions that are least affected by

noise. We select these regions with a signal-to-noise ratio estimate

that is obtained from an initial, less-accurate registration. Our simu-

lations demonstrate that the proposed noise-adaptive scheme signif-

icantly outperforms the conventional registration approach.

1. INTRODUCTION

The goal of image registration is to map all points in one image plane

to positions in a second plane. Image registration has applications in

computer vision, such as image matching for stereo vision, pattern

recognition, and motion analysis. It is also used in areas such as envi-

ronmental monitoring, weather forecasting, geographic information

systems, super-resolution, and computer tomography [1, 2].

The standard problem addressed in the image registration litera-

ture can be formulated as the optimization of the deformation func-

tion G that gives the optimal registration of a target image I t(x, y)
onto a reference image Ir(x′, y′), with respect to a cost function C:

Gopt = arg opt
G

C(Ir, G(It)). (1)

In practice, images are often observed in noisy conditions that

significantly reduce the precision of the alignment. The conventional

approach to deal with additive noise is to smooth both the reference

and target images. The level of blur is not related to the noise level,

but is of a pre-defined constant level, affecting the registration ac-

curacy. The resulting accuracy of registration in noise has been de-

scribed in [3]. Attempts to eliminate the effect of noise disturbance

by modifying the cost function can be found in [4]. To the best of

our knowledge, no general study on the influence of noise or on the

efficacy of noise attenuation algorithms on registration exists.

Equation (1) is the starting point of most image registration stud-

ies. However, the single image registration problem stated above

does not occur often, in practice. We usually observe a set of noisy

images {I0, I1, . . . , IL−1, IL}, select a reference image among

them, and search for a geometrical transform to register the rest of

the images onto the selected one. Without loss of generality we se-

lect I0(x, y) to be the reference image. We assume that both the ref-

erence and target images are generated from the same image scene

I(x, y). We have for k = 1 . . . L:

I0(x, y) = I(x, y) + N0(x, y) (2)

Ik(x, y) = G−1
Mk

(
I(x, y) + Nk

1 (x, y)
)

+ Nk
2 (x, y),

where N0(x, y), Nk
1 (x, y), and Nk

2 (x, y) are zero-mean random

noise disturbances, and search for the set of L parameterized geo-

metrical deformations GMk that register the target images onto ref-

erence image.

Typically, the space of geometric deformations is constrained to

a predefined parametric family of deformations and one searches for

a set of optimal parameters. We assume that the image is warped by

a global affine transform described by the affine matrix M.

A critical choice in the design of a registration algorithm is the

selection of the image cost function and the image representation.

Gradient-based shift estimation techniques, e.g., [5] often exhibit de-

graded performance under noisy conditions due to the fact that the

gradient operator amplifies noise [6]. For moment-based registration

techniques, e.g., [7], the noise tolerance is also weak since noise can

lead to imperfect moment estimates and large errors in parameter de-

termination. These observations motivated us to use intensity-based

registration algorithm.

We select as cost function for the optimization procedure the

squared sum of intensity differences (SSD):

CSSD = ‖I0 − GMk(Ik)‖2. (3)

We observed that this criterion is as robust to noise as measures such

as normalized cross-correlation and mutual information [8], but at a

lower computational cost.

Using equations (2) and (3), the problem of multi-channel image

registration becomes

Mopt
k = arg min

Mk

CSSD(I0, GMk(Ik)), k = 1 . . . L. (4)

We describe a new, noise-robust two-step registration algorithm as

the solution to the problem defined in equation (4). The purpose of

the first step is a coarse registration to provide an accurate local esti-

mate of the signal-to-noise ratio (SNR). The second high-resolution

registration step is based only on the regions least affected by noise,

as indicated by the SNR results of the first step. As shown by the

results, our algorithm leads to highly accurate image registration.

2. NOISE-ROBUST REGISTRATION ALGORITHM

In this section, we first describe an initial registration that is insen-

sitive to noise. In subsection 2.2 we describe how to use this initial

registration to estimate the local SNR and then use the SNR to make

a more accurate second registration.

2.1. Initial Registration Algorithm
The basic registration algorithm has as first step the selection of con-

trol points. The control points are matched between the images and
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the corresponding parameters of the mapping functions are deter-

mined. This operation is based on the known coordinates of control

points. Next, the target image is geometrically transformed by means

of a mapping function.

The Transform Model used in this presentation is a general affine

transform. It can address scaling, transformation, rotation, skew,

and aspect ratio. The affine mapping from old (x, y) to new pixel

coordinates (x′, y′) is defined as:

GAffine :

∣∣∣∣ x′ = m11x + m12y + m13

y′ = m21x + m22y + m23

For the sake of presentation simplicity we define the affine transfor-

mation as z′ = Mz, where z = [x y 1]T , z′ = [x′ y′ 1]T , and the

affine transform matrix is of the form:

M =

⎛
⎝ m11 m12 m13

m21 m22 m23

0 0 1

⎞
⎠ .

The first step in the registration algorithm is the control points extrac-

tion. The idea to register only regions of the image with rich texture

is of even greater importance in noisy image registration, since the

selected high energy regions are less affected by the noise. In the

proposed algorithm we use the Harris corner detector [9] for extrac-

tion of control points from the reference image. The set of control

points is a subset of all points in the image, and they are denoted

as {z1, z2, . . . , zN} in the target image and {z′1, z′2, . . . , z′N} in the

reference image.

It is not appropriate to track a single pixel, but a small window

around each control point. An appropriate window size should be de-

termined so that it is large enough to be statistically significant and

stable, but sufficiently small to minimize the local geometric varia-

tion within the image window (cf. Fig. 1). The only method yield-

Reference Image Target Image

Fig. 1. Sliding window around a control point (small filled rectan-

gular) and its exploration area (large dashed contour).

ing the globally optimal solution is an exhaustive search over the

entire image that is computationally not feasible. We use a multi-

resolution hill-climbing optimization [10]. We generate Gaussian

pyramids [11], on both reference and target image, see Fig. 2. The

image registration starts with a coarse resolution, and when the op-

timal parameters are found, they are used as an initial guess for the

next level. The estimates of the parameters gradually improve with

increasing resolution. One advantage of pyramidal approach is that

computational cost is greatly reduced. In addition, the resolution

pyramid regularizes the optimization problem by causing the error

surface to be smoother at a coarser resolution.

Once the minimum is located at pixel level, we perform error in-
terpolation for subpixel accuracy. The subpixel shift is the distance

between the minimum of the interpolation function and the closest

56x56

128x128

256x256

Fig. 2. Example of a three-level pyramid scheme. Control points

locations are propagated from the top to the pixel level. The subpixel

shift and affine parameters are calculated only on the pixel level.

integer pixel. Bicubic interpolation is used on a 5 x 5 grid around

the estimated minimum.

The affine model parameters are derived from the matched con-

trol points. Given a number of corresponding control points in two

images, we estimate the parameters for the mapping function. A

least-square approach is used to determine the affine matrix, mini-

mizing the criterion:

JMSE =
1

N

N∑
n=1

‖z′n − M̂zn‖. (5)

The estimate of affine matrix that minimizes the above criterion can

be calculated as:

M̂ = (DT
z Dz)

−1DT
z Dz′ , (6)

where the control points are stored in the data matrices

Dz = [z1z2 . . . zN ] and Dz′ = [z′1z′2 . . . z′N ].
Some of the control points may not be properly aligned and have

to be rejected as outliers. We use a simple threshold criterion to

select only a subset of control points, by rejecting the control points

that do not fulfill the criterion:

‖z′n − M̂zn‖ < Θ, (7)

where the pre-defined threshold Θ is set to 0.8. With the outliers

removed, we recalculate the affine model (6). Once we have the op-

timal affine parameters Mopt at the control points, the target image

is warped with Catmull-Rom splines [12]. Catmull-Rom splines re-

semble a sinc function, but do not introduce excessive ringing, which

makes them attractive for image registration.

The proposed registration algorithm is iterative, and it is out-

lined in Table 1. With each iteration, the sliding window centered

around each control point is less in violation of the assumed affine

transform.

2.2. Refined Registration; SNR-Based Control-Point Selection
The refined registration step is a repetition of the basic registration,

but is based only on control points with a high level of noise immu-

nity. The proper control points selection requires an accurate esti-

mate of the local SNR that is described in the current section.

The output of the initial coarse registration step is a set of geo-

metrically transformed noisy images

Ik
∗ = GMk(Ik), k = 1 . . . L, (8)

which, together with the reference I0, we use to obtain an initial

estimate of the source scene

Î = median{I0, I1
∗ , I2

∗ , . . . , IL
∗ }. (9)
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Table 1. Summary of the registration algorithm used in both steps.

Iterations are terminated when the improvement is below the prede-

fined threshold Υ set to 10−6.

do:

1. Select control points

2. Match control points

(a) optimize for CSSD measure

(b) hill-climbing on a multiresolution pyramid as a

search strategy

(c) bicubic interpolate the error surface to obtain the

subpixel shift

3. Calculate affine parameters from matched control points

(a) optimize for JMSE

(b) reject outliers, before computing the affine param-

eters

4. Affine warp the target image Ik
i+1 = GMk(Ik

i ), with

Catmull-Rom splines
while: |CSSD(I0, Ik

i ) − CSSD(I0, Ik
i+1)| ≥ Υ

The median operator’s behavior is used since outliers resulting from

misregistration do not affect the registration quality. The denoising

effect of the median filtering as a function of the number of noisy

observations is shown in Fig. 3. We conclude that with only ten

observations we obtain a SNR gain of about 10 dB.

We use the knowledge of the source scene to estimate locally

the noise variance σ̂2
Nk for the reference and each of the target im-

ages. Note that the noise in the reference image is N 0(x, y), and

that the effective noise for the warped target images Ik
∗ (x, y) can be

expressed as

Nk(x, y) ≈ Nk
1 (x, y) + GM̂k

(
Nk

2 (x, y)
)

. (10)

Let σ2
Ik be the sample variance of the noisy image, estimated from

a local neighborhood of each pixel. Then the noise variance is esti-

mated as

σ̂2
Nk = σ2

Ik∗
− σ2

Î . (11)

Next we define the SNR at each control-point position (as found by

the Harris corner detector on the noisy reference image) as

SNR(z′n) = 10 log10

(
σ2

Ik∗
(z′n)

σ̂2
Nk(z′n)

)
, (12)

and assign a SNR label {SNR(z′1), SNR(z′2), . . . , SNR(z′N )} to

each control point {z′1, z′2, . . . , z′N}. We have found experimentally

that it is sufficient to reject control points with a SNR below 5 dB.

Thus, the proposed algorithm consists of two registration steps.

The first step performs the basic registration based on the control

points {z′1, z′2, . . . , z′N} that is described in section 2.1. The second

step is a refined registration that is identical to the first step except

that it is based on a new set of control points {z′1, z′2, . . . , z′S} that

were selected for their high local SNR. The second registration step

is not performed if the mean SNR at the control points, after the

initial registration, is above 25 dB.

3. EVALUATION

For the assessment of the proposed algorithm, we used artificially

deformed images, thus facilitating the evaluation of the performance
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Fig. 3. The denoising effect of noisy images by median filtering, for

two input SNR levels. The output SNR is measured between the true

I(x, y) and estimated Î(x, y).

of the algorithm. The similarity measures used for evaluation are the

Hilbert-Schmidt norm on the difference between true and estimated

affine matrices CM = ‖M − M̂‖, and the mean squared error at

control points CCP = 1
N

∑N
n=1 ‖z′n − zn‖. For the simulations

we used a popular set of eight images: Lena, Barbara, Mandrill,
Goldhill, House, Peppers, Boats, and Cameramen. All images are of

size 256 x 256 pixels.

3.1. Combination of Gaussian and Impulsive Noise
We warp the original image with a deformation belonging to the

warp space (general affine transform):

GAffine :

∣∣∣∣ x′ = 0.94x − 0.03y + 15.2
y′ = 0.20x + 0.98y − 11.0,

and add white Gaussian noise to the target images at 5 dB SNR,

combined with impulsive noise with probability 0.02. An example

of images used in the simulations is shown in Fig. 4. The results of

simulations, presented in Table 2, clearly indicate the advantage of

the refined registration step.

Table 2. Evaluation of squared error at control points, and model

parameter accuracy. Results are averaged over eight images.

Initial Registration Refined Registration

CCP 0.310 0.204

CM 0.121 0.099

3.2. Locally Varying Noise
It is common that registration is performed for images with spatially

varying distortion. Due to its ability to select only meaningful data

regions, our algorithm is particularly robust to this type of distortion.

To evaluate the performance in spatially varying noise, we added

white Gaussian noise in a single 64 x 64 pixels rectangle, arbitrarily

located within each of the images. The target images were warped
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Fig. 4. The images at the Row 1 are noisy reference I0(x, y) and

one of the target images Ik(x, y). At the Row 2 we see the ideal

scene I(x, y) and the median of the registered images Îk(x, y).

Fig. 5. Row 1: control points localization for ”ideal” and global-

noise case. Row 2: points localization for two configurations locally

varying noise.

with the affine model described in the previous section. The results

shown in Table 3 indicate that the refined registration step gives a

stronger improvement for this case than the spatially uniform noise

case. To explain the simulation results, we present the localization

of the control points on the reference image for clean, global and

local noise cases in Fig. 5. The localized distortion region captures

control points and these are difficult to match, resulting in a large

model error. However, since our algorithm marks the noisy regions

as low SNR regions, it prevents the selection of control points in

these regions and the registration accuracy is similar to that for noise-

free images.

Table 3. Evaluation of squared error at control points, and model

parameter accuracy. Results are averaged over eight images.

Initial Registration Refined Registration

CCP 0.641 0.105

CM 0.206 0.032

4. DISCUSSION

We presented a robust registration algorithm that can register noisy

images with sub-pixel accuracy. Our main contribution is that image

regions that are least affected by noise should be selected and tracked

in the registration procedure. We showed that this improves the reg-

istration of noisy images significantly. If the noise level varies spa-

tially, as is common, the performance improvement is particularly

dramatic. While our implementation is for the global affine geomet-

rical transformation, we expect the method to work well for other

transformations as well. If more complex models are needed, they

can be built on the affine transform [5]. It is expected that the noise

sensitivity will be higher for more complex geometric transforms,

increasing the benefit of the proposed scheme of SNR adaptive re-

gion selection.
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