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ABSTRACT 

A novel algorithm for disparity/depth estimation from multi-
view images is presented. A dynamic programming approach 
with window-based correlation and a novel cost function is 
proposed.. The smoothness of disparity/depth map is embedded 
in dynamic programming approach, whilst the window-based 
correlation increases reliability. The enhancement methods are 
included, i.e. adaptive window size and shiftable window are 
used to increase reliability in homogenous areas and to increase 
sharpness at object boundaries. First, the algorithms estimates 
depth maps along a single camera axis. The algorithsm exploits 
then combines the depth estimates from different axis to derive 
a suitable depth map for multi-view images. The proposed 
scheme outperforms existing approaches in parallel and in the 
non-parallel camera configurations. 

1. INTRODUCTION 

The disparity/depth estimation algorithm from the sequences of 
stereo/multi-view images is an important element in 3D vision. 
Owing to occlusions, imperfect camera calibrations, imperfect 
light balance and homogenous colour/luminance, the accurate 
estimate of disparity/depth remains a challenging problem. In 
this paper, we use dynamic programming to determine the 
optimal disparity/depth fields, which was first introduced in [1] 
for stereo images. The dynamic programming approach is 
better than traditional matching schemes, since it does not 
contain blocking artefacts or noisy depth maps. Moreover, the 
dynamic programming is efficient to solve multi-stage 
problems, which enables disparity estimation and occlusion 
detection simultaneously.  

The choice of a good cost functions for searching the 
minimum-cost path is a key aspect of the dynamic 
programming approach. The simplest cost function utilizes the 
similarity of luminance between the left and the right views. I. 
Cox has proposed the matching process using individual pixel 
intensity [2]. Although cohesivity constraints are used to deal 
with the inter-scanlines disparity discontinuities, the ambiguity 
from imperfect light balance might affect homogenous areas. 
Therefore, we investigate the performance of the window-based 
correlation for dynamic programming and propose some 
enhancements such as adaptive window size and shiftable 
windows. The small window size and shiftable windows lead to 

sharp object boundaries, whilst the large window size achieves 
better matching in homogeneous areas [3].  

The dynamic programming scheme can be improved by 
supplementing the cost function to identify the occlusion. The 
accuracy of the occlusion detection has been enhanced by 
Bayesian method which requires a probability of occlusion 
[4,5]. N. Grammalidis and M. G. Strinzis have proposed the 
disparity estimation and the occlusion detection algorithm for 
multi-view system by using dynamic programming, but cost 
defined to identify occlusion is fixed [6]. In this paper, we 
propose a simple but effective cost function by exploiting 
confidence information from other cameras. The erroneous 
prediction by using one view reference is avoided by exploiting 
the other reference views. This produces better disparity 
estimation by using multiple reference views. 

The proposed scheme is tested with the parallel and non-
parallel camera configurations. Each configuration is 
considered with two types of camera geometries: a linear case 
(one dimension) and a planar case (two dimensions). In the 
later case, a joint horizontal and vertical scanning is proposed 
to deal with the multiple global minima. The rest of paper is 
organized as follows: Section 2 describes the proposed cost 
functions. Then, Section 3 explains the window-based 
correlation with adaptive window size and shiftable window. 
The performance of the proposed scheme is tested with two 
camera configurations and results are presented in Section 4 
with conclusions in Section 5. 

2. PROPOSED COST FUNCTIONS FOR DYNAMIC 
PROGRAMMING

We propose to search the matching pixels along each scanline 
through dynamic programming and the disparity/depth of each 
pixel comes from the optimum path. Considering one particular 
pixel, there are three possible disparity values, which are equal 
to, more or less than that of the consecutive pixel. The first case 
usually occurs in the non-occlusion areas, whilst the last two 
cases possibly occur in the half-occlusion areas. Hence, three 
costs are defined to each node (i, j) in dynamic programming; 
C1 and C2 are the occlusion costs of the pixel, which are 
invisible in left view and right view respectively, and C3 is the 
cost of the pixel in non-occlusion areas. These costs are 
expressed as follows: 
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coefficient that is inversely proportional to the distance from 
the pixel (i,j), and ijp is the intensity of pixel pixel (i,j). The 

1LB  and 1RB  are the baseline between the current camera and 
the closest left and the closest right cameras respectively, whilst 
λ is the occlusion parameter. 

The occlusion parameter directly affects the costs in 
dynamic programming. The appropriate value depends upon 
the details of images, i.e. the multi-view image sequences 
composed of a wide range of depths require a large λ  for 
operating and vice versa. The areas where the depth is changing 
usually contain the high different luminance from the reference 
view at the same position, so an initial λ  is determined as 
follows. For each pixel (i,j), the energy of different luminance 
between the current and the reference view, )0(2

ije , is computed. 

Then, the value λ1 , which is the intersection of function E

and ( )E−λ1 , is defined to be an energy threshold that half the 

number of pixels of an image have the energy )0(2
ije  less than 

λ1 . We suggest that the experiments would run with the λ
values near the initial one to find the best result. 

The accumulated cost of each node (i, j) is marked as in 
Eq.3 and the selected path of each node is in Eq.4. 
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Finally, the least accumulated cost of the last pixel in a 
scanline is selected to identify the optimum path.  After 
tracking back along the optimum path, the estimated disparities 
are generated and the occlusion areas are simultaneously 
marked at the pixels where the occlusion cost dominates.  

The proposed algorithm achieves the disparity estimation 
and occlusion detection by exploiting the error of the 
intensity/colour matching. The large )(2 de  value implies 
occlusion that the current pixel could not match any pixel in the 
reference view. This situation always occurs near the object 
boundaries that the disparity of this pixel is different from those 
of neighbouring pixels. Therefore, it can be marked that this 
pixel is located in the background of the current view and it is 
occluded by foreground in the reference view. That is, if C1 or 
C2 dominates, this pixel is in the background and the disparity 
is decreasing or increasing respectively, but if C3 dominates, 
this pixel could be either in the background or the foreground 
with the same disparity as the previous pixel. For example, a 
large El and a small Er cause the value of C1 less than C2 and 
C3, therefore C1 dominates, i.e. this current pixel does not 
correspond to any pixel of the left view reference but evidently 
match one pixel in the right view reference. Hence, this pixel is 
in the background on the right of the foreground object. 

Noticeably, the incorrect path might appear at the occlusion 

areas composed of similar details of the neighbouring non-
occlusion areas. However, if more cameras are available, this 
problem could be eliminated by using other reference views. 
The following subsection 2.1 and 2.2 show the proposed 
schemes for more than three cameras that are available in a 
linear case and a planar case respectively. 

2.1 Multi-view image extension 

To extend the three-view disparity estimation to the general 
multi-view disparity estimation for a linear configuration, the 
error from all the reference views are compared and the 
minimum is selected. The error function becomes: 
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where xLB and xRB  are the baselines between the current 
camera and the xth camera on the left and right sides with total n
left view references and m  right view references respectively.  

Better prediction is achieved by exploiting the information 
from other view references. However, these error functions are 
adapted to the cost C3 only, whilst the cost C1 and C2 are still 
calculated from the closest left and the closest right views. This 
is because the smaller error might lead the mistaken path in 
occlusion areas, i.e. C3 would dominate instead of C1 or C2.

2.2 Combining horizontal and vertical scanning 

If the image sequences are available both vertical and 
horizontal direction, the estimated disparity from scanning in 
one camera axis could be used to modify the cost for each node 
of scanning process in another camera axis by pre-marking the 
occlusion areas. After vertical scanning, for example, the 
possible occlusion regions of the horizontal scanning are 
marked from the vertically estimated disparity map, and then 
the costs C1 and C2 of such regions are adjusted with the 
proportion α as follows: 
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where 0 < α < 1. As a result, the disparity and occlusion in this 
horizontal scanning are more reliable than that does not exploit 
information from the vertical scanning.  

Then, the result of the vertical scanning where C3 dominates 
is used to replace the result of the horizontal scanning which is 
marked as occlusions. This could compensate the faults of the 
one-directional scanning which come from the continuity of the 
tracked path when the disparity of this area is dropping from 
the foreground or come from the too narrow gap between the 
front objects as shown in Fig. 1 at A and B points respectively. 
In conclusion, to increase the reliability, we also propose to use 
the result of the first scanning if C3s of these areas dominate to 
replace the result of the second scanning in the occlusion area.  
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Fig. 1 The disparity estimation with the thick solid line showing the tracked 
path of the optimum global cost, and the thin solid line showing the 
estimated disparity got from the tracked path. Some mistakes possibly 
appear as the difference from the true disparity (dotted line).

3. WINDOW-BASED CORRELATION AND 
ENHANCEMENT SCHEMES  

The window-based correlation is investigated in this paper. The 
cost of each node is found by exploiting the correlation of the 
current pixel and its neighbourhoods. The details in a window 
gain more reliable matching compared to a single pixel. 
Moreover, the performance of the window-based correlation 
can be improved by exploiting variable window sizes and 
shiftable windows method. 

The purpose of the adaptive window size scheme is to solve 
the error matching in the homogenous region. This lies in the 
basic idea that the higher variance gains the higher perceived 
reliability. Hence, the window size is grown to cover enough 
details of the texture, but not too big to make the depth 
inhomogeneous in a window. In this paper, an adaptive window 
or block size is chosen based on the following approach. 
Firstly, each pixel starts with 3x3 window size. Then, if there is 
no edge inside, the size is increased to be 5x5 pixels. On the 
contrary, the size of the window that includes the edge details 
will be decreased to 2x2, if the variance of the window is more 
than the specific threshold. The results will be shown in the 
next section. 

For the shiftable windows, this algorithm improves the 
matching areas near the object boundaries that produce the 
depth discontinuities. The window of the conventional 
approach is centred at the current pixel, whilst the shiftable 
window could be located at the appropriate area that minimizes 
the overlap region. The proper window position might be 
defined by various criteria. The minimum sum of the absolute 
difference (SAD) is one of the simple criteria. It is assumed that 
the homogenous luminance regions contain the homogenous 
depth. The minimum SAD between the matching windows 
located at the homogenous depth is less than the minimum 
SAD between the matching windows located at the area 
composed of various depths. 

4. DISPARITY/DEPTH ESTIMATION FOR MULTI-
VIEW IMAGE SYSTEM  

The proposed algorithm exploits the property of multi-view 
points and possible occlusions to indicate the constant or 
transition stage of disparity/depth. This section shows the 
results of the proposed scheme described in previous sections. 

Firstly, the proposed scheme is applied to the parallel camera 
configuration, then to non-parallel camera configuration. 

4.1. Parallel Camera Configuration  

Considering the parallel camera configuration, which is the 
simplest formation of multi-cameras, the camera axis is not 
rotated from each other, as well as the world coordinates. If the 
image point 1x  is normalized, the space point’s coordinates are 

ww ZZ /tKxxKX 11
1

w +==
− . If the disparity, 21→d , is defined as 

the vector from a point in image 1 to its corresponding point in 
image 2, the depth wZ  has a  relationship with the disparity 

wZd /21 tK−=
→

. Additionally, if the translation parameters are 

reduced to only one direction, the disparity can be rewritten 
to wZBfd /1221 −=

→
,  where f and 12B  represent the focus length 

and the baseline between camera 1 and camera 2 respectively. 
It implies that only the disparity or the shift distance between 
the corresponding pixels is adequate to represent the 3D 
information. Therefore, the disparity estimation scheme is 
proposed for this simple geometry instead of the depth 
estimation 

The Head sequence is employed to simulate the proposed 
scheme explained in section 3 and 4. The estimated disparity 
map of the traditional fix window size is illustrated in Fig. 2 
(c), whilst the results of the enhanced variable window size 
scheme is shown in Fig. 2 (d) that is the result of three window 
sizes as the algorithm described in section 3. Then, the shiftable 
window approach was tested with fix window size. The 
estimated disparity map is significantly improved as shown in 
Fig. 2 (e). Fig. 2 (f) displays the estimated disparity from the 
vertical scanning by applying both adaptive window size and 
the shiftable window. Subsequently the predicted occlusion 
areas for the horizontal scanning, shown in Fig. 2 (g), are 
marked by the result in Fig. 2 (f). Finally, the disparity field 
estimated by congregating the horizontal and the vertical 
scanning as explained in section 3 is illustrated in Fig. 2 (h). 

4.2. Non-Parallel Camera Configuration  

The disparity of this system is not just the one directional 
shifting, along neither horizontal nor vertical axis. However, 
searching the corresponding points among views can be 
minimized to one direction along the epipolar line. 

The epipolar line, Ev, in view v ( :,viewleft:{ rlv∈

}viewright ) that corresponds to the normalized pixel 
T)1,,( jim =x of the middle view m can be calculated by 

mvv xFE = [7], where vF  is the fundamental matrix of view v

corresponding to the middle view. 
Fig. 3 (a) illustrates the original image of Leo1 sequence in 

the middle view; whilst Fig. 3 (b) and (c) shows the estimated 
depth map with precision of 0.0076. This 480x270-size 
sequence is composed of 5 views in the horizontal direction and 
3 views in the vertical direction with the non-parallel geometry. 
From Fig. 3 (b), the result of dynamic programming without 
any enhance scheme shows the performance of proposed cost 

A B 

1 The multi-view Leo sequence was captured at University of Bristol
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         (a)             (b)                      (c)            (d)  

         (e)             (f)                      (g)            (h)  

Fig. 2. (a) The middle view of the original image. (b) The true disparity. The horizontally estimated disparity map of Head multi-view images with (c) no 
any enhanced scheme. (d) variable window size but not shiftable window. (e) shiftable window (SAD) but not variable window size. (f) The vertically 
estimated disparity map with variable window size and shiftable window. (g) The occlusion map. The black and grey colours indicate the area that might be 
occluded in Left view reference and Right view reference respectively, whilst the white colour shows areas that could be seen in all views. (h) The estimated 
disparity map with vertical and horizontal combination. 

  
(a)        (b)                                                                    (c) 

Fig. 3. The middle view of the Leo multi-view test images. (a) Original images. (b) Estimated depth map by dynamic programming without any enhance 
scheme. (c) Estimated depth map by dynamic programming with adaptive window size and shiftable window and also exploiting vertical and horizontal 
congregation. 

Functions for non-parallel geometry, and the result is greatly 
improved when the adaptive window size, the shiftable window 
and the combination of vertical and horizontal scanning method 
are included as shown in Fig. 3 (c). 

5. CONCLUSION 

In this paper, a novel disparity/depth estimation based on 
window-based dynamic programming is presented and the cost 
functions to take into account discontinuity and occlusion are 
defined. The adaptive window size and shiftable window are 
included to improve the reliability and sharpness. According to 
the result, the proposed method provides more realistic 
disparity/depth map for all camera configurations. Moreover, 
the proposed horizontal and vertical scanning combination can 
highly improve the estimated disparity/depth map, if the two-
dimensional array of multi-view camera allocation is available.
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