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ABSTRACT

In this paper, we present the estimation method of global mo-
tion parameters corresponding to 3D camera motion in the
noisy situation. Total least squares problem is first formulated
to represent the global motion parameters estimation proce-
dure from the noise-corrupted image coordinates. Then, a re-
cursive total least squares (RTLS) algorithm is proposed to
estimate 3D camera motion parameters in image sequences.
The algorithm is proposed based on a five camera parameter
model: zoom, focal length, pan, tilt, and swing. The exper-
imental results show that the proposed RTLS algorithm has
better performance than the conventional linear algorithms in
the measurement noisy environments.

1. INTRODUCTION

Estimating the relative camera motion between two image
frames is an important research topic in the areas of computer
vision and image coding.It has been shown that in video cod-
ing, global motion as the movement due to camera motion
can be modeled using a few parameters [1]-[4]. Therefore,
many researchers have studied the global motion compensa-
tion which can improve motion prediction and remove the
motion side information greatly.

The conventional linear least squares (LS) estimation meth-
ods [2, 3] for global motion parameters suffer from the unde-
sirable measurement errors such as spatial quantization errors
and feature matching errors. Several researchers proposed
the algorithms which reduce the effect of measurement errors
[1, 4]. However, their performances are severely degraded by
the disturbance of independently moving objects. Therefore,
it needs the more effective and robust techniques to estimate
global motion parameters in the presence of local motion.

In this paper, the total least squares (TLS) problem is
formulated to describe the relationship between the global
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motion parameters and the image coordinates contaminated
with the measurement errors. These errors can be regarded as
matching noise whose distribution is supposed to be nonsta-
tionary Gaussian. In the presence of the nonstationary match-
ing noise, the more effective recursive algorithm is proposed
to solve the TLS problem.

In Section 2, a recursive total least squares algorithm (RTLS)
for estimating the camera motion parameters is described. In
Section 3, the performance of the proposed RTLS algorithm
is evaluated.

2. MOTION PARAMETER ESTIMATION USING
RECURSIVE TOTAL LEAST SQUARES

ALGORITHM

In perspective imaging, the relationship between the image
coordinate (X, Y ) before the camera motion and the image
coordinate (X ′, Y ′) after the camera motion is described [4]
as

X ′ = F2
r11X + r12Y + r13F1

r31X + r32Y + r33F1

Y ′ = F2
r21X + r22Y + r23F1

r31X + r32Y + r33F1
. (1)

where F1, F2 are the focal lengths of the camera before and
after zoom s = F2/F1, respectively, and rij for i, j = 1, 2, 3
are elements of a 3D rotation matrix R. The parameters of
equation (1) is composed of five 3D camera motion parame-
ters: zoom factor s, pan angle α, tilt angle β, swing angle γ,
and focal length F1.

Let �U i = (X ′
i, Y

′
i )T and �Vi = (Xi, Yi)T , ∀i, denote the

2-D image plane vectors after the camera motion and before
the camera motion, respectively. Since the coordinates of fea-
tures can not be measured exactly due to measurement errors
such as spatial quantization errors, feature detector errors, and
the matching noise caused by local motion [1, 4], we define
a random variable �δ = (δx, δy)T as the measurement error
in the image coordinate. We assume that the noises at the
different points are uncorrelated, and the noises in the two
components of the same coordinates are uncorrelated.
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If the measured points, X̂i, Ŷi, X̂ ′
i , and Ŷ ′

i have additive
errors δxi , δyi , δx′

i
, and δy′

i
, respectively, for i = 1, · · · , N ,

the observed image coordinate (X ′
i, Y

′
i ) after camera motion

can be expressed as

�Ui + ∆�Ui = Ĥi�a, for i = 1, · · · , N (2)

where �a consists of the eight motoin parameters, i.e.,

a1 = s · r11/r33, a2 = s · r12/r33, a3 = s · F1r13/r33,

a4 = s · r21/r33, a5 = s · r22/r33, a6 = s · F1r23/r33,

a7 = r31/(F1r33), a8 = r32/(F1r33), (3)

and H i is a 2×8 matrix whose entities are functions of image
coordinates (Xi, Yi) and (X ′

i, Y
′
i ) as

Hi =
[

Xi Yi 1 0 0 0 −X ′
iXi −X ′

iYi

0 0 0 Xi Yi 1 −Y ′
i Xi −Y ′

i Yi

]
.

(4)
Here, Ĥi = Hi+∆H i, ∆H i is the noise matrix of H i, and
∆�U i is the noise vector of �Ui. If a feature point (X̂ ′

i, Ŷ
′
i )T

corresponds to the local moving object having different mo-
tion from the camera motion, the noise term δx′

i
= X̂ ′

i −
X ′

i may have a large magnitude in each image coordinates.
Therefore, unlike what the conventional methods [1, 4] as-
sume, i.e., the local motion can be regarded as matching noise
whose distribution is supposed to be Gaussian as a station-
ary noise, these errors rather seem to be nonstationary noise.
Furthermore, they introduce a bias to the estimated camera
motion parameter. Thus, this effect has to be considered.

Given k point correspondences (X̂i, Ŷi) and (X̂ ′
i, Ŷ

′
i ), i =

1, 2, · · · , k, the equation (2) can be expressed as

�Uk + ∆�Uk = [Hk + ∆Hk]�a (5)

where

�Uk = [�U
T

1 , · · · , �U
T

k ]T

Hk = [HT
1 , · · · , HT

k ]T

∆Hk = [∆HT
1 , · · · , ∆HT

k ]T

∆�Uk = [∆�U
T

1 , · · · , ∆�U
T

k ]T .

The total least squares (TLS) problem in (5) can be rewritten
as

min ‖W k‖F (6)

subject to [Φk + W k]�qk = 0.

where ‖ · ‖F is the Frobenius norm, �qk
�
=

(
1
−�a

)
= [1 −

a(1), · · · ,−a(8)]T , and

Φk
�
= [�Uk, Hk], W k

�
= [∆�Uk, ∆Hk].

In our approach, a recursive procedure is proposed to effi-
ciently estimate the TLS solution in the presence of the non-
stationary noise.

Let rj denote a 9 × 2 input matrix at index j as follows.

rj
�
= [�U j , Hj ]T = [�r1j , �r2j ]. (7)

It is well-known that the minimization problem of (6) can
be associated with the equivalent minimization problem of
Rayleigh quotient

µ(�qk) = min ‖W k‖2 = min
�qk

�qT
k ΦT

k Φk�qk

�qT
k D�qk

= min
�qk

�qT
k Rk�qk

�qT
k D�qk

(8)
where Rk satisfies the Hermitian matrix which is defined as

Rk
�
= ΦT

k Φk =
k∑

j=1

rjr
T
j (9)

and D is a 9 × 9 symmetric nonnegative matrix which is de-
fined as

D =

⎡
⎢⎢⎢⎢⎣

I3×3

0
I2×2

0
I2×2

⎤
⎥⎥⎥⎥⎦ . (10)

It is easy to see that 3rd, 6th columns of ∆H are all zeros.
Therefore, Φk has the exactly known columns, 4th and 7th
columns.

For a real-valued symmetric matrix Rk, given the previ-
ous eigenvector �qk−1, we update it to obtain �qk by

�qk = �qk−1 + Ψk�α (11)

where Ψk is a 9 × 2 correction matrix and �α = [α1, α2]T . In
the gradient method, Ψk is chosen as the gradient of µ(�qk),
which gives a poor convergence speed. In the Newton’s method,
Rk is chosen as a Hessian matrix of (8). But it is difficult to
compute a second derivatives of (8) and guarantee positive
definite of Hessian matrix in practical situations.

For the algorithm to get good adaptation to the input sig-
nal, Ψk is chosen to be the Kalman gain matrix,

Ψk = Kk = R−1
k rk = [�ψ1k, �ψ2k]. (12)

The value of �α can be found by substituting (11) to (8) and
differentiating with respect to α1, α2, respectively. But, it
is difficult to solve α1 and α2 simultaneously. So, we can
solve them alternately after one value is fixed. This proce-
dure means that the input matrix of (7) is divided into each
column vectors, i.e.,

�rk = �rmk, m = 1, 2 (13)

and update the parameter �qk successively. First we select �r1k .
Then, (11) can be reduced into

�qk = �qk−1 + α�ψk (14)
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where �ψk is the Kalman gain vector,

�ψk = R−1
k �rk. (15)

In order to reduce the computational complexity, we use the
matrix inversion lemma to update the Kalman gain.

R−1
k = [Rk−1 + �rk�r

T
k ]−1 = R−1

k−1 −
R−1

k−1�rk�r
T
k R−1

k−1

1 + �rT
k R−1

k−1�rk

.

So, R−1
k can be simply updated from the previous value. In

the presence of noise, the rank(Rk) is generally full since the
independent noises are added to the coordinates which are the
elements of Rk and each coordinate before camera motion is
measured at the distinct points.

Instead of (11), substituting (14) to (8), differentiating the
resulting equation with respect to a scalar α, and setting it to
zero will result in the following quadratic equation

aα2 + bα + c = 0 (16)

where

a = �qT
k−1Rk

�ψk
�ψT

k D�ψk − �ψT
k Rk

�ψk�qT
k−1D

�ψk

b = �qT
k−1Rk�qk−1

�ψT
k D�ψk − �ψT

k Rk
�ψk�qT

k−1D�qk−1

c = �qT
k−1Rk�qk−1�q

T
k−1D

�ψk − �qT
k−1Rk

�ψk�qT
k−1D�qk−1

Among the coefficients a, b, c, the quadratic forms are com-
puted efficiently by using �qT

k−1Rk
�ψk = �qT

k−1�rk and �ψT
k Rk

�ψk =
�ψT

k �rk. Also, �qT
k−1Rk�qk−1 can be computed simply as fol-

lows.

�qT
k−1Rk�qk−1 = �qT

k−1Rk−1�qk−1 + �qT
k−1�rk�r

T
k �qk−1

= λmin(k − 1)�qT
k−1D�qk−1 + (�qT

k−1�rk)2

The minimum value of µ(�qk), λmin(k), can be obtained by

λmin(k) =
δ + a · α

d
(17)

where d = �ψT
k D�ψk�qT

k−1D�qk−1 − (�qT
k−1D

�ψk)2 and δ =
�qT

k−1Rk�qk−1
�ψT

k D�ψk − �qT
k−1Rk

�ψk�qT
k−1D

�ψk.
As in [5], choosing the smallest root of (16), we obtain

the update vector �qk for (14). Once more, �qk is updated by
the above procedures for �r2k in (13). Finally, the solution of
�a can be obtained

a(i − 1) = − qN (i)
qN (1)

, i = 2, · · · , 9 (18)

where qN (i) is the ith element of the vector �qN . The proposed
algorithm is summarized as follow.

Algorithm

Step 1 Permutation : �a → �q

Step 2 Initialize �q0 and �ψ0.
For k = 1, · · · , N
For m = 1, 2

Step 3 Select input vector �rk = �rmk

Step 4 Update �ψk = R−1
k �rk by using the matrix inversion

lemma

Step 5 Calculate α from (16)

α =
−b −√

b2 − 4ac

2a

Step 6 �qk = �qk−1 + α�ψk

End
End

Step 7 Inverse permutation : �q → �a

a(i − 1) = − qN (i)
qN (1) , i = 2, · · · , 9

3. EXPERIMENTAL RESULTS

3.1. Experiment with Synthetic Data

The proposed method has been tested for the synthetic data
in which the camera motion parameters are known. In this
simulation, the image size of 480 × 704 is used. The focal
length F1 and F2 are set to 100 and 95, respectively. The
rotation angle (α, β, γ) is set to (−0.1◦, 0.1◦, 0.0◦).

Each feature points are contaminated with additive Gaus-
sian noise with a mean of zero and a standard deviation of
0.5 [pixel]. To evaluate the robustness of the proposed algo-
rithm to the non-stationary noises, we generated 20% noisy
motion fields, which represent the matching errors caused by
local motion or undesirable observations, by corrupting the
synthetic motion field with additive Gaussian noise which has
mean, -2, and standard deviation, 5.

To evaluate the performance of the parameter estimators,
mean square error (MSE) is measured by MSE = 1

N

∑N
i=1

‖�u′(�ui,�ae)−�u′(�ui,�ao)‖2 where �u, �u′ is a point before and af-
ter the camera motion, respectively, �ao denotes the true cam-
era parameter vector, and �ae denotes the estimated one. Fig.
1 is the average mean squared errors of the estimation meth-
ods through 100 trials. As shown in 1, the proposed RTLS
algorithm outperforms over the existing algorithms which are
Y. T. Tse [3], A. Zakhor [2], 6-parameter method, and MLS-
TLS algorithm [4]. Compared with MLS-TLS algorithm, the
average estimation accuracy of the proposed algorithm are
shown in Fig. 2. The proposed algorithm provides more pre-
cise accuracy than MLS-TLS algorithm. In the computational
aspects, the computational complexity of the proposed algo-
rithm is m·( 5

2n2+6n) for m = 2N, n = 9. But the computa-
tional complexity of MLS-TLS algorithm is 2mn2−2/3n3+
4mn2

2+8n3
2+mn2

1+n3
1/3 for m = 2N, n = 9, n2 = 7, n1 =

2. Therefore, the computational complexity of the proposed
algorithm is less than that of the MLS-TLS algorithm.
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Fig. 1. MSE as the number of feature points varies

MLS�TLS
Proposed

Number of feature points

k�a
o

�
�a
e
k

�����������������������������

���	

���


����

����

���

��
	

��



��
�

��
�

��


���	

���


Fig. 2. Estimation accuracy

3.2. Experiment with Real Image Data

In this simulation, a two-stage motion compensation (MC)
technique is used in H.263 codec. In the first stage, the pro-
posed global MC (GMC) is used to construct a globally mo-
tion compensated frame. In the second stage, a globally mo-
tion compensated frame is used as the reference frame in local
MC (LMC). The coding structure used is IPPPP. . ., and the
PB-frames mode is not employed. Quantization step size of
the DCT coefficients is set to 15. For GMC, block size and
search range are set to (8, −15 ∼ +15) and (16, −7 ∼ +7),
respectively. For LMC, block size and search range are set to
16, −7 ∼ +7, respectively. In case of H.263, only LMC is
used.

The test image sequences is 240 × 352 SIF ”Flower gar-
den” sequence (44-90frames) whose frame rates are 15 fps.
As shown in Fig. 3, the overall performance of the proposed
method becomes considerably better than that of the conven-
tional method [2, 3] as well as that of H.263 (LMC only) even
in a large 3D rotating image. The total PSNR and bitrates
of the proposed method are slightly better than those of the
MLS-TLS method. In the view of GMC, the proposed GMC
method has better performance in Fig. 3 (b). In the aspect of
computational time, the proposed method significantly out-
performs the MLS-TLS method as shown in Fig. 3 (d). The
average number of iteration of the proposed method is 1/3 of
the MLS-TLS method. This implies that the proposed algo-
rithm can accurately estimate the camera motion parameters
by means of fewer iterations. Thus, the computational effort
can be reduced greatly in the estimation procedure.

4. CONCLUSIONS

In this paper, we have described a recursive total least squares
algorithm for estimating 3D camera motion in image sequences.
The proposed RTLS algorithm is based on a five camera pa-
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Fig. 3. Flower garden sequence (a) PSNR of decoded pic-
tures (b) PSNR of GMC pictures (c) total bitrates (d) the num-
ber of iteration

rameter model: zoom, focal length, pan, tilt, and swing. The
parameter estimation using the RTLS algorithm reduces the
effect of the non-stationary noises efficiently. It has been
shown in the simulation that the proposed algorithm has better
performance than the MLS-TLS algorithm as well as the ex-
isting linear least squares algorithms in the presence of mea-
surement errors.
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