
LOW-PASS FILTER BASED VLSI ORIENTED VARIABLE BLOCK SIZE MOTION
ESTIMATION ALGORITHM FOR H.264

Zhenyu Liu∗

Kitakyushu Foundation for the Advancement
of Industry Science and Technology

Kitakyushu, 808-0135, Japan

Yang Song, Takeshi Ikenaga, Satoshi Goto

The Graduate School of IPS
Waseda University

Kitakyushu, 808-0135, Japan

ABSTRACT

In this paper, a fast motion estimation algorithm, which is friendly

to VLSI hardware implementation is proposed. This algorithm has

such features: First, through “Haar” low-pass filter based subsam-

pling, the computation complexity at each search position is reduced

to about 25% of the original algorithm; Second, one modified mo-

tion vector prediction is provided to eliminate the data dependence

among sub-partitions in the same macro block(MB). Based on this

approach, parallel processing for variable block size motion estima-

tion(VBSME) with integer pixel accuracy can be realized; Third,

one “adaptive sub-search window” scheme is proposed to further re-

duce computation cost and it also can facilitate reference frame data

reusing to reduce memory transfer from the external RAM to the on-

chip SRAM. The proposed VBSME algorithm is very suitable for

parallel VLSI implementation.

1. INTRODUCTION

H.264/AVC is the newest international video coding standard, which

can provide much better peak signal-to-noise (PSNR) and visual

quality [1]. In H.264/AVC, motion estimation (ME) is conducted

on different blocks sizes named as VBSME. During VBSME, all the

block sizes inside one MB are processed and the block mode with

the best R-D cost is then chosen. Compared with previous fixed

block size ME process, VBSME can achieve higher compression

ratio and better video quality, but it accounts for more than 50%

computation cost of the encoding algorithm. Therefore, hardware

acceleration is a must for real-time applications. How to reduce the

processing time and power dissipation of VBSME is a vital issue for

real-time encoder and this needs hardware-software co-optimization.

Computation complexity reduction, simple control logic and regular

memory access are three important issues for hardware architecture

design. Many fast motion estimation algorithms have be provided

to reduced the algorithm computation through reducing search po-

sitions. These algorithms are efficient for fixed block ME. But for

H.264, because MB is partitioned into many blocks and each block

has its own search path, it is hard for fast ME to realize SAD reusing

scheme as full search (FS) algorithm [2]. Partition mode in H.264

multiplies the computation complexity of fast ME. In real-time ap-

plications, worst-case complexity of a ME method becomes more

important than its average complexity. Despite improving average

complexity, fast ME techniques won’t have much better worst-case

complexity than FS with SAD reuse. Moreover, the control logic and

∗Thanks to Kitakyushu knowledge-based cluster project for the Japanese

Ministry of ECSST funding.

memory access of fast ME are complex and irregular, so they are not

suitable for hardware designs. In fact, FS is more preferred in hard-

ware ME accelerator designs, because (1) Process elements (PE) are

scheduled to work in parallel and fully utilized, so its throughput is

in direct ratio to its PE number; (2) Its memory access and control

logic are regular and simple; (3) It can realize SAD reusing scheme

in H.264, so the computation complexity is almost reduced to the

level of single block type case. In order to apply FS to built parallel

hardware accelerator, two problems must be resolved. First, the data

dependency in one MB must be eliminated to make parallel process-

ing feasible. Second, the computation complexity must be reduced

to save its hardware cost, power dissipation and processing latency.

In this paper, we provide a low-pass filter based subsampling

algorithm and sub-search window approach to reduce the compu-

tation. In order to eliminate the data dependency, one simplified

motion vector prediction (SMVP) algorithm is proposed to facilitate

parallel processing. The details of this algorithm are described in

Section 2. The simulation results in Section 3 show that there is little

quality loss, despite a major reduction in complexity. Conclusions

are given in Section 4.

2. LOW-PASS FILTER BASED VLSI ORIENTED VBSME
ALGORITHM

2.1. Low-Pass Filter Based Subsampling Algorithm

Subsampling is one effective approach for arithmetic computation

reduction. During ME procedure, the search area data and current

MB are both subsampled in vertical direction [3], so 50% arithmetic

computation can be reduced. What is more, because this approach

does not increase the complexity of control logic and memory ac-

cess, it is widely applied in hardware accelerator. But directly sub-

sampling algorithm also brings some problems. First it causes signal

distortion. For 1-D signal x(n), its frequency spectrum is denoted

as X(ejω). The subsampled signal y(n) and its frequency spectrum

Y (ejω) can be represented as Eq. 1 and Eq. 2.

y(n) = x(2n) (1)

Y (ejω) =
1

2
[X(ej ω

2) + X(ej(ω

2
−π))] (2)

This procedure is also clearly illustrated in Figure 1. We can see

that the frequency aliasing after subsampling causes the distortion of

the signal.

The second drawback of subsampling is that small blocks are

more prone to be trapped into false optimal points. In H.264, there

II ­ 2531­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

� ��� �

� �

����

����

� ��� �

� �

� ��� ��

����

�
�

� �
�

�

� �
� �
�

�
� �

�

�

� �

��	
�	�
 ��	
�	�

Fig. 1. Frequency Aliasing after Subsampling

exists small size blocks, such as 4×4 and 4×8 blocks. After subsam-

pling, most characters of these small blocks are lost. For example,

if the picture is decimated in both vertical and horizonal directions,

each 4×4 block has just 4 pixels. During ME, 4-pixel data character

makes 4×4 blocks more prone to false optimal points.

For one image, low-frequency signals contain more information

than high frequency signals. Moreover, after motion-compensated

prediction, the low-frequency DCT coefficients of the residual data

are more significant, because high frequency coefficients are always

discarded during quantization procedure. Based on this hypothe-

sis, we could applied subsampling approach on the low-frequency

signals of the video sequence. In details, the reference picture and

the current picture first pass through a low-pass filter to get low fre-

quency signals, which are labelled as low-frequency reference (LR)

and low-frequency current (LC). Subsampling ME algorithm is pro-

cessed on these low-frequency pictures. Because the high frequency

signals are filtered, the frequency aliasing can be greatly alleviated.

Moreover, through the low-pass filter, the word-length of each pixel

is increased, so more characters are preserved. Consequently, Low-

pass filter based subsampling algorithm can efficiently resolve those

problems caused by directly subsampling.

In order to reduce the computation burden, we apply “Haar”

low-pass filter, which means that each pixel in the generated pic-

ture is the sum of neighboring four pixels in the source picture. For

example, the pixel LR(i, j) can be expressed as Eq. 3.

LR(i, j)=R(i, j)+R(i+1, j)+R(i, j+1)+R(i+1, j+1) (3)

In SAD calculation, LR and LC are subsampled in both hori-

zonal and vertical directions. The SAD computation of a Bx×By size

block with the (lx, ly) coordinate in the frame can be expressed as

Eq. 4, where (u, v) represents the motion vector. So, at each search

position, the processed pixel number is reduced to 25% of full-search

algorithm. Different from wavelet based ME, we do not decimate the

LR frame, so (u, v) traverses each search position in the search win-

dow. Though wavelet based ME can further reduce the computation

through decreasing search positions, it has two drawbacks for VB-

SME in H.264: (1) The search step based on decimation is 2-pixel.

After coarse search, each block must search around its coarse search

result to find its 1-pixel accuracy optimal position. Because there are

41 blocks in one MB, it is not easy to realize one efficient hardware

for this refining search. (2) Decimating both LR and LC causes shift

variance problem [4]. This problem is more serious for small size

blocks.

SAD(u, v) =

Bx/2−1∑
i=0

By/2−1∑
j=0

|LC(lx+2i, ly+2j)

− LR(lx+2i+u, ly+2j+v)|

(4)

����

����

����

����

����

����

����

�	��

�� ��� ��� ��� ��� ��� ��� ���

���������	
��

�
�
�
�
��
�
�

���

������������
��������
������

�����������
������

Fig. 2. RD performances for Foreman CIF sequence at 30fps

In order to investigate the low-pass filter based subsampling VB-

SME algorithm, it is compared with FS and directly subsampling

algorithm. The first 255 frames in “foreman” CIF sequence are

used in the simulation. The test conditions are I-P-P-P..., CAVLC,

Hadamard transform, 32×32 search range, R-D optimization and 5

reference frames. The RD-curves are shown in Figure 2. Compared

with FS algorithm, directly subsampling algorithm has about 0.15dB

PSNR loss. In contrast, the subsampling based on “Haar” low-pass

filter has the similar performance as FS algorithm.

If the picture width is W , the picture hight is H and the search

range is M×N , in the original FS algorithm for each reference frame,

the absolute difference (AD) number is W×H×M×N and the addi-

tion operation (ADD) number is W×H×265×M×N/256. In our al-

gorithm, the ADD number for low-pass filter of each reference frame

is 4×W×H . After subsampling in vertical and horizonal directions,

for each search position’s SAD calculation, the AD number is 64 and

the ADD number is 73. In SAD cost processing, the AD number is

(W×H×M×N×64)/256. Taking the low-pass filter processing into

account, the total ADD operation is W×H×(73×M×N/256+4).

If search rang is 32×32, compared with FS VBSME, 75% AD and

72% ADD operations can be saved by our algorithm during SAD

cost computation.

2.2. Simplified Motion Vector Prediction Algorithm

In the reference encoder software, RD cost is the sum of SAD and

encoding cost of motion vector difference (MVD). MVD calculation

incurs data dependency among not only adjacent MBs but also sub-

partitions within one MB. This makes parallel processing unfeasible.

To eliminate the data correlation within MB, the approach in refer-

ence [2] is directly omitting the MVD cost during the integer pixel

precision VBSME, because SAD cost is much more important than

MVD cost. Based on this modified algorithm, high performance

2-D [2] and 1-D [5] array processing VBSME architectures are pro-

posed. Unfortunately, this scheme is not suitable for our algorithm.

First, the low-pass filter makes the video lose its high frequency

signals. Second, subsampling incurs the frequency aliasing noise.

Third, after subsampling, feature loss is serious for small blocks,

II ­ 254

which makes they prone to be trapped in false optimize search po-

sitions. Through experiments, we find that without MVD cost our

algorithm has 0.3dB-0.6dB PSNR loss.

���

�����

���

�����

���

����	

���

�����

���

����

���

�����

���

�����

���

����

���

�����

���

�����

���

������

���

�����	

���

������

���

������

���

������

���

�����

���

�����

���

�����

���

����	

���

�����

���

�����

���

����

���

�����

���

����

���

�����

���

�����

���

����	

���

�����

���

�����

���

����

���

�����

���

����

���

�����

���

�����

���

����	

���

�����

���

������

���

������

���

������

���

������

���

�������

Fig. 3. Lables of Macroblock and sub-macroblock partitions

One modified MVP algorithm, which avoids the data depen-

dency within MB, is provided in this paper to facilitate VBSME par-

allel processing. In order to clarify the algorithm, 41 blocks in one

MB are labelled, as shown in Figure 3. Considering pipeline pro-

cessing and hardware complexity, we just use MVs of the four 4×4
blocks in the upper neighboring MB to derive MVPs of all blocks in

current MB, as shown in Figure 4.

���������	

������	

� �
 ��� � �
 ��� � �
��� � �
���

Fig. 4. Motion Vector Prediction Data Dependency

If “Upper MB” exits, the MVP for blocks “4×4 0”, “4×4 4”,

“4×4 8”, “4×4 12”, “4×8 0” and “4×8 4” is
−−→
MV 4×4 A; the MVP for

blocks “4×4 1”, “4×4 5”, “4×4 9”, “4×4 13”, “4×8 1” and “4×8 5”

is
−−→
MV 4×4 B ; the MVP for blocks “4×4 2”, “4×4 6”, “4×4 10”,

“4×4 14”, “4×8 2” and “4×8 6” is
−−→
MV 4×4 C ; the MVP for blocks

“4×4 3”, “4×4 7”, “4×4 11”, “4×4 15”, “4×8 3” and “4×8 7” is
−−→
MV 4×4 D; the MVP for blocks “8×4 0”, “8×4 2”, “8×4 4”, “8×4 6”,

“8×8 0”, “8×8 2” and “8×16 0” is (
−−→
MV 4×4 A+

−−→
MV 4×4 B)/2; the

MVP for blocks “8×4 1”, “8×4 3”, “8×4 5”, “8×4 7”, “8×8 1”,

“8× 8 3” and “8× 16 1” is (
−−→
MV 4×4 C +

−−→
MV 4×4 D)/2; the MVP

for blocks “16×8 0”, “16×8 1” and “16×16 0” is (
−−→
MV 4×4 A +

−−→
MV 4×4 B+

−−→
MV 4×4 C+

−−→
MV 4×4 D)/4. Otherwise, MVPs for all blocks

are set as zero.

2.3. Adaptive Sub-Search Window

In H.264 encoder reference software, each block uses its MVP as

search window center. That means each block has its own dedicated

search window. In the view point of the hardware implementation,

it is highly preferred to the uniform search window for all blocks in

MB, because SAD reusing scheme can be fully utilized. In order

to simplify the control logic and the data transfer, rectangle search

area is preferred. In reference [2], [0, 0] is adopted as uniform search

window center because this approach can facilitate data reusing to

reduce data transfer. For those sequences which have large MVs, the

real MVs will be out of the range of search window. Certainly, we

can enlarge the search window to resolve this problem, but this ap-

proach incurs the increase of computation complexity, internal mem-

ory access and power dissipation. These items increase in direct ratio

to the search area.

In order to resolve this problem, we provide an adaptive sub-

search window scheme. First we define the search area frame for

each MB. The search frame center is [0, 0], so its overlapped area for

adjacent MBs can be reused as reference [2]. The search frame width

is denoted as Fw and its hight is denoted as Fh. Fw and Fh could be

defined large enough to cover the real MV. VBSME is just performed

in a sub-area in the search frame, which is derived from
−−→
MV 4×4 A

−−→
MV 4×4 B

−−→
MV 4×4 C and

−−→
MV 4×4 D . The bottom left corner of this

sub-area is [xbl, ybl] and the top right corner is [xtr, ytr], which are

defined in Eq. 5. This scheme dramatically reduces the search posi-

tions even the video sequence has large MVs. For example, using

“stefan” CIF first 255 frames, if Fw = Fh = 64, xe = ye = 16,

the average searched positions just account for 28.7% of the search

frame.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xbl =max(−Fw/2, min(
−−→
MV4×4A[x],

−−→
MV4×4B [x],

−−→
MV4×4C [x],

−−→
MV4×4 D[x])−xe)

ybl =max(−Fh/2, min(
−−→
MV4×4A[y],

−−→
MV4×4B [y],

−−→
MV4×4C [y],

−−→
MV4×4 D[y])−ye)

xtr =min(Fw/2, max(
−−→
MV4×4A[x],

−−→
MV4×4B [x],

−−→
MV4×4C [x],

−−→
MV4×4 D[x])+xe)

ytr =min(Fh/2, max(
−−→
MV4×4A[y],

−−→
MV4×4B [y],

−−→
MV4×4C [y],

−−→
MV4×4 D[y])+ye)

(5)

Table 1. Simulation Conditions
QP 28, 30, 32, 34, 36, 38, 40

Search Jm81a SFS[2] Proposed
Range QCIF:±16 ±32 Fw =Fh =64

CIF:±24 xe =ye =16

Image foreman(QCIF),carphone(QCIF),news(QCIF),
(Format) coastguard(QCIF),stefan(CIF),tempete(CIF)

etc no B slice, CAVLC, 5 references
R-D optimization, Hadamard Transform

3. EXPERIMENTAL RESULTS

The experimental conditions are shown in Table 1 and the relative

results are shown in Table 2. For the evaluation of the proposed al-

gorithm performance, we test the FS algorithm in reference soft-

ware (Jm81a) and the simplified full search (SFS) algorithm pro-

vided in [2]. BDBR (Bjonteggard Delta BitRate) and BDPSNR (Bjon-

teggard Delta PSNR) [6], which are respectively average difference

of bitrate and PSNR between two methods, are used and they are

derived from the simulation results when QP = 28, 32, 36, 40. FS

of Jm81a is adopted as norm. The BDBR and BDPSNR results are

shown in Table 3. The (+) sign in BDBR and (−) sign in BDP-

SNR indicate the coding loss. From Table 3 we observe that our

II ­ 255

Table 2. Performance Comparison

Sequ- Algo- Rate (kbps) PSNR (dB)
ence rithm 28 30 32 34 36 38 40 28 30 32 34 36 38 40
fore- FS 124.156 92.716 70.247 54.67 42.81 34.194 27.312 35.782 34.425 33.135 31.883 30.647 29.379 28.137
man SFS 127.130 95.448 72.693 57.14 44.932 36.124 29.821 35.746 34.391 33.144 31.951 30.734 29.549 28.418

OUR 124.985 93.587 70.892 55.317 42.969 34.409 27.676 35.765 34.407 33.113 31.904 30.618 29.363 28.076
car- FS 129.907 97.236 73.084 55.472 41.370 31.301 24.004 36.926 35.410 34.015 32.653 31.304 29.873 28.720

phone SFS 131.301 98.336 74.012 56.173 42.010 32.176 24.611 36.901 35.398 33.926 32.634 31.279 29.858 28.697
OUR 130.830 98.025 73.596 55.915 41.485 31.543 24.334 36.899 35.402 33.960 32.599 31.278 29.865 28.708
FS 73.273 56.821 43.930 34.632 26.676 20.79 16.399 36.628 35.08 33.575 32.208 30.692 29.242 28.032

news SFS 74.404 57.869 44.438 35.337 26.974 21.018 16.525 36.612 35.062 33.523 32.175 30.648 29.167 28.016
OUR 74.008 57.362 44.460 34.721 26.651 20.825 16.398 36.620 35.065 33.592 32.145 30.635 29.218 28.006

coast- FS 214.408 145.411 97.529 67.300 45.618 32.075 23.146 34.07 32.504 31.032 29.722 28.418 27.207 26.127
guard SFS 215.035 145.537 97.833 67.271 45.631 32.037 23.547 34.055 32.483 31.027 29.718 28.405 27.198 26.131

OUR 215.570 145.491 98.629 67.512 45.746 32.134 23.507 34.061 32.47 31.019 29.707 28.401 27.188 26.155
ste- FS 1115.61 802.705 576.050 426.251 314.191 240.706 188.099 35.622 33.960 32.394 30.950 29.411 27.914 26.486
fan SFS 1120.79 808.614 581.270 431.496 320.579 246.943 193.877 35.594 33.929 32.375 30.923 29.389 27.905 26.492

OUR 1133.33 816.545 585.293 434.374 321.490 245.636 191.583 35.577 33.909 32.347 30.892 29.378 27.881 26.446
temp- FS 1122.55 785.151 541.218 382.631 266.319 192.795 142.914 34.884 33.253 31.689 30.287 28.844 27.448 26.158

ete SFS 1127.45 788.035 544.257 385.817 269.340 196.397 146.563 34.861 33.218 31.666 30.267 28.820 27.436 26.152
OUR 1126.11 787.091 542.813 383.686 267.456 193.841 143.729 34.857 33.219 31.667 30.267 28.836 27.425 26.137

algorithm and SFS have the similar performance as reference FS. In

most sequences, our scheme is better than SFS except for “coast-

guard” and “stefan”. The higher coding loss in “stefan” sequence

is caused by the limitation of sub-search area. If xe and ye are ex-

tend to xe = ye = 24, significant quality gain can be observed. For

“coastguard”, it contains a lot of high frequency signals because its

background includes a river. So the low-pass filter reduces the VB-

SME’s quality.

In these simulations, our algorithm needs much less computa-

tion operations in integer pixel accuracy VBSME. For example, in

“tempete” sequence, the searched points of our algorithm is 28.6%

of SFS’s and at each position the “AD” operation number is just 25%

of SFS’s, so the total “AD” operation of our algorithm is 7.15% of

SFS’s.

Table 3. Performance Comparison in BDBR and BDPSNR
SFS[2] Proposed

BDBR BDPSNR BDBR BDPSNR

foreman +3.36% -0.167dB +1.26% -0.064dB

carphone +2.57% -0.122dB +1.40% -0.067dB

news +1.86% -0.107dB +0.90% -0.053dB

coastguard +0.60% -0.021dB +1.10% -0.038dB

stefan +1.87% -0.094dB +2.70% -0.136dB

tempete +1.48% -0.062dB +0.80% -0.032dB

4. CONCLUSIONS

One VLSI parallel processing oriented integer pixel accuracy VB-

SME algorithm is provided in this paper. Three major approaches

are proposed. First, low-pass filter based subsampling scheme effec-

tively reduces about 75% arithmetic operations in every “SAD” cal-

culation with trivial coding efficiency loss. Similar to FS algorithm,

SAD reusing scheme can be adopted by our algorithm to reduce

the computation cost more. Second, the SMVP algorithm avoids

the data dependency among sub-partitions within one MB and this

makes VLSI parallel processing feasible. At last, the proposed sub-

search window could efficiently reduces the search positions. Conse-

quently, the power consumption for integer pixel accuracy VBSME

could be reduced in ratio to the average search area. Compared with

the original FS, this algorithm has considerably lower complexity

and it is much more suitable for parallel processing VLSI imple-

mentation.

5. REFERENCES

[1] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke,

F. Pereira, T. Stockhammer, and T. Wedi, “Video coding with

H.264/AVC: Tools, performance, and complexity,” IEEE Cir-
cuits and Systems Magazine, vol. 4, no. 1, pp. 7–28, First Quar-

ter 2004.

[2] Y.W. Huang et.al., “Hardware architecture design for vari-

able block size motion estimation in MPEG-4 AVC/JVT/ITU-T

H.264,” in ISCAS ’03. Proceedings of the 2003 International
Symposium on Circuits and Systems, May 2003, vol. 2, pp. 796–

799.

[3] Y.W. Huang et.al., “A 1.3TOPS H.264/AVC single-chip encoder

for HDTV applications,” in IEEE International Solid-State Cir-
cuits Conference 2005, Febrary 2005, pp. 128–130.

[4] H.W. Park and H.S. Kim, “Motion estimation using low-band-

shift method for wavelet-based moving-picture coding,” IEEE
Transactions on Image Processing, vol. 9, no. 4, pp. 577–587,

April 2000.

[5] S.Y. Yap and J. V. McCanny, “A VLSI architecture for variable

block size video motion estimation,” IEEE Transactions on Cir-
cuits and Systems II: Express Briefs, vol. 51, no. 7, pp. 384–389,

October 2004.

[6] G. Bjontegaard, “Calculation of average PSNR differences be-

tween RD-curves,” ITU-T Q.6/16, Doc. #VCEG-M33, Mar.

2001

II ­ 256

