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ABSTRACT

This paper proposes a new motion vector (MV) smoothing

algorithm to track the real motion in image sequences for

MPEG video encoders. First, a pre-checking algorithm is

employed to eliminate wrong motion vectors and preserve

all possible motion vectors. For each block considered, the

motion similarity between the neighboring blocks and the

number of candidate motion vectors are jointly exploited to

adaptively grow the filtering support, which is supposed to

have homogeneous motion and sufficient spatial gradient.

Then, all candidate motion vectors are checked within the

filtering support using a new motion smoothness-

constrained matching criteria. The simulation results show

that the proposed algorithm can efficiently track the real

motion resulting in smooth motion vector field (MVF).

1. INTRODUCTION

Motion information is one of the most important cues for

human to perceive video content [1]. Reliable motion vector

(MV) information can considerably aid motion

segmentation and object tracking, which is important to

implement motion-perception optimized video encoders in

the human perception sense. Unfortunately, tracking real

motion is an ill-posed problem. Due to the simplicity and

the coding efficiency of MVs, block-matching algorithm

(BMA) is widely used. However, in the scenes with

deformable motion, noise, object occlusion, lighting

variation, and existence of multiple local minima in the

SAD distribution, the motion field estimated by BMA may

be heavily corrupted by noise [2][3]. In this paper, we

mainly focus on MV smoothing to aid conventional BMA in

tracking the true motion as soon as possible. 

Rate-distortion theory had been widely employed to

optimize motion estimation (ME) algorithm in [4] and the

references therein. These algorithms usually concentrated on 

reducing the coding bits under a distortion constraint instead

of approximating the real motion. Vector median filters

were quite effective in reducing impulsive noise in dense

MVF generated by optical flow ME algorithm [5]. However, 

the filtering performance may be unsatisfactory in the case

of motion field generated by conventional BMA. In addition,

overlapped block motion estimation (OBME) algorithm

utilized the motion similarities between the neighboring

blocks to smoothen the motion field [6]. Indeed, the OBME

algorithm can reduce block artifacts efficiently and

smoothen the MVF to some extent. However, a troublesome

problem unsolved is the motion edges existing within the

blocks located on boundaries of moving objects. In fact, in

real image sequences the boundaries of the moving objects

seldom coincide with block boundaries, and blocks on these

boundaries contain motion edges, thus the MVF obtained

may contain serious errors. To circumvent this problem,

variable block size BMA with implicit motion segmentation

had been proposed in [7]. Blocks containing moving edges

are segmented into several variable size subblocks.

However, variable block size was not compatible with the

MPEG syntax. In [8], a feature-tracking algorithm was

proposed using multi-candidate pre-screening to prevent the

true MVs from being excluded and eliminate all impossible

MVs. In addition, a cost function using motion similarities

between the neighboring blocks was used to select the true

MVs, which is in effect a method similar to OBME.

In this paper, a new MVF smoothing filter is proposed to

aid conventional BMA in tracking the real motion with little

additional computation. Pre-checking procedure preserves

all candidate MVs and eliminates all wrong MVs. The

filtering support is determined adaptively according to the

motion similarity between neighboring blocks and the

number of its candidate MVs. Then, all candidate MVs are

applied to the filtering support and checked using a new MV

smoothness constrained matching criteria.

This rest of this paper is organized as follows. Section 2

discusses some common problems of motion smoothing.

The proposed algorithm is proposed in section 3. Finally,

simulation results and conclusion are given in section 4. 

2. SOME PROBLEMS OF MOTION SMOOTHING

The sum of absolute difference (SAD) is the most popular

matching criterion in BMA for its simplicity. However, the

SAD criterion is challenged by some factors such as noise,

deformable motion, motion edges existing within the block,

object occlusion, etc. As a result, there will exist multiple

local minima in the SAD distribution, and the selected block

with minimum SAD may not corresponds to the real motion

[8]. Thus, the SAD criterion often results in unreliable MVs.
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Object occlusion and deformable motion can be solved

using multi-reference frames and adopting

generalized/deformable BMA respectively [2]. In this paper,

we will mainly focus on the motion edges and the noise

factors.

 There is an implicit assumption in BMA that all pixels

within a block undergo uniform motion. Motion edges

existing within a block just violate this assumption.

Increasing the motion smoothness of a block is desired for

MV smoothing filter to avoid motion edges. In addition,

noise usually prevents the BMA from tracking the real

motion especially in flat regions with insufficient spatial

gradient. Sufficient spatial gradient of a block is also desired

to improve the algorithm’s robustness to noise.

In fact, how to guarantee a block to have uniform motion

and sufficient spatial gradient is a crucial problem in MV

smoothing. Theoretically speaking, variable size BMA with

implicit motion segmentation and spatial gradient analysis is

intrinsically desired for the motion smoothness and spatial

gradient constraints [7]. However, variable block size is not

compliant with most MPEG standards, motion segmentation

and gradient analysis also consumes heavy computation.

To improve the MV accuracy under the compatibility and

computation constraints, a practical approach is to segment

each conventional block into several subblocks with small

size, and block matching is performed on subblock basis.

Due to the decreased block size, the chance of moving edges 

existing in subblocks declines greatly. The subblock-level

MVs can be further filtered to track real motion efficiently.

With the subblock-level MVs, we can easily estimate the

corresponding block’s MV, which is used for usual motion

compensation and motion vector coding.

In general, the smaller the subblock size is used, the

higher motion smoothness the subblocks will have.

However, the sufficient spatial gradient constraint may be

challenged by the decrease of subblock size. As a result, the

BMA’s robustness to noise decreases accordingly. We

simply segment a macroblock into four subblocks of size

8x8, and the simulation results are basically satisfactory.

Adaptive subblock segmentation will be addressed in the

future.

The subblock-level MVs estimated by BMA may still be

wrong due to existing of multiple local minima caused by

insufficient spatial gradient and noise. We have observed in

the simulation that the MV with the smallest SAD does not

always correspond to the true motion. The object of motion

smoothing algorithm is to select the true MV from all

possible candidate MVs.

A multi-candidate pre-screening approach was proposed

to select several candidate MVs according to the local SAD

distribution [8]. In addition, a cost function, which is the

sum of the current block’s SAD and weighted SADs of the

neighboring blocks, is employed to check all candidate MVs

to select the desired one by exploiting the motion similarity

between neighboring blocks.

There are two major drawbacks in this algorithm. First,

the filtering support, i.e. which and how many neighboring

blocks are used in the cost function, is fixed. In fact, the

chance that moving edges exist between neighboring blocks

is very high. This will complicate the determination of the

weighting factors. Second, possible motion inhomogeneity

between neighboring blocks is not taken into consideration

in the cost function. In this paper, we adjust the filtering

support adaptively and propose a motion smoothness

constrained cost function based on motion similarity to

remedy the two drawbacks in [8].

3. THE PROPOSED MV SMOOTHING ALGORITHM

To avoid the motion inhomogeneity between neighboring

blocks, we grow the filtering support adaptively at pixel

level. The neighboring pixels undergoing the same motion

as the pixels in the current subblock are included to grow

the filtering support. Correspondingly, a uniform weighting

factor is applied to all pixels within the filtering support.

The proposed filtering support structure is illustrated in

Fig.1. A foursquare region centering about the current

subblock is initialized as the raw filtering support that is

marked with white lines. draw is the distance between the

raw filtering support and the current subblock. The final

filtering support is enclosed with bold dot line. The final

filtering support is composed of the current subblock and

four directional overlapped blocks (OB). The left-up

(original) pixel and right-down (end) pixel are marked with

 and  respectively. In addition, dl, du, dr, and dd are

the width enlarged at the left, up, right, and down directions

with respect to the current subblock.

Fig.1.  The proposed filtering support structure

An ideal filtering support is supposed to contain sufficient 

spatial gradient, simultaneously with homogeneous motion.

That is, dl, du, dr, and dd should be determined adaptively

according to the characteristics of the local spatial gradient

and motion similarity.

In the following, we will investigate the relationship

between the number of the candidate MVs (Ncan) and
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spatial activity measured with variance. It is crucial to

determine Ncan to eliminate wrong MVs and preserve the

true MV. In [8], the motion vectors whose corresponding

SAD are no more than 1.5 folds of the minimal SAD

(SADmin) are admitted into the candidate pool. However, we

find that the true MVs are usually eliminated at uniform

subblocks adopting the fixed threshold criterion in [8]. This

is mainly because that the SADmin are usually very small at

uniform subblocks. Thus, we adopt different thresholds at

different regions in this paper. 4 folds of SADmin is adopted

as the threshold for uniform subblocks, and 1.5 folds of

SADmin is adopted the threshold for other subblocks.

The 4th frame of the “Flower Garden” sequence is taken

as example frame here. The original example image and the

raw MVF estimated by the conventional BMA are sown in

Fig.2.

Fig.2. The 4th frame of the “Flower Garden” sequence and the raw MVF. 

The variance distribution and the Ncan distribution of all

subblocks in the example frame are shown in Fig.3. In this

paper, all Ncan are clipped into the range [0, 63]. According

to Fig.3, we can find that the subblocks with small variance,

i.e. insufficient spatial gradient, generally have large Ncan.

Fig.3. (left): the variance distribution, (right): the Ncan distribution.

Combing the results in Fig.2 and Fig.3, we find that Ncan

can directly reflect the confidence of the raw MVs. The

smaller Ncan is, the higher the confidence is. Similarly, a

subblock with large Ncan generally means that the raw MV

is unreliable or wrong. Therefore, Ncan is a very good

indicator of the local gradient and spatial activity

characteristics to determine the structure of the raw filtering

support. As a result, draw=Ncan is adopted in this paper to

determine the raw filtering support. Moreover, motion

similarity will be further employed to adjust the raw

filtering support to determine the final filtering support, i.e.

to determine dl, du, dr, and dd adaptively. 

The distortion smoothness can efficiently reflect the

motion similarity between the current and the reference

subblock. However, only using the SAD value can’t

measure motion smoothness optimally because that SAD is

just the total distortion without considering the overall

distortion smoothness between the pixels within a subblock.

In this paper, we separate each subblock into four granules

to facilitate measure of distortion smoothness. Similarly,

each directional OB in the filtering support is separated into

L granules. It is apparent that the granule-level SAD

distribution has higher resolution for distortion smoothness

differentiation. Foursquare granule of size 4�4 is adopted

in both cases. The directional OBs with different shape and

size are allowed to have different L values. If the height or

width of an OB is not an integral multiple of 4, overlapped

granules are allowed in the OB. Four granules within a

subblock and L granules within the directional OBs are

shown in Fig.4. The overlapped granules are displayed with

dotted lines.

Fig. 4. Left: four granules in a subblock, center: L granules in horizontal

overlapped blocks, right: L granules in verticals overlapped blocks. 

The granule-level SAD difference between the L granules

within a directional OB or a subblock (L=4) in the case of

kth candidate motion vector (vk) is defined as follows

1
( , , ) ( , ) ( , , )| |

L

gSAD
l

diff ori end L SAD l SAD ori end
=
∑  =  × −   kk k

v v v     (1) 

ori and end are the original and end pixels of the directional

OB or the subblock respectively. SADg(l,vk) is the SAD of

the lth granule of vk, and SAD(ori,end,vk) is the SAD of vk.

The granule-level SAD distribution and the diffSAD

distribution of the subblocks of raw MVs are shown Fig. 5. 

Fig.5. (left): the SAD distribution of all subblocks in the case of raw MVs,

(right): the diffSAD distribution in the case of raw MVs.
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According to the property of BMA, a true MV is

supposed to result in not only small SAD(ori,end,vk) but also

small diffSAD(ori,end,vk). Therefore, we define a weighted

SAD with motion smoothness constraint as follows

( , , )
( , , ) ( , , )

diff ori endSADWSAD ori end SAD ori end
L

4 × 
 =  + 

k k

vk
v v   (2) 

On the one hand, the weighted SAD (WSAD) will be used

as the matching criterion to improve the MV accuracy. On

the other hand, WSAD will be incorporated with Ncan to

jointly determine parameters dl, du, dr, and dd adaptively.

In the following, we will take dl as example to explain the

proposed method for adaptive filtering support growing.

First, dl is initialized as dl1 according to the WSAD of the

current subblock and that of the left-up rectangle in the raw

filtering support as follows 

1
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;
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k
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Then, dl2 is determined according to the WSAD of the

current subblock and that of the left OB as follows 

2
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Finally, the relatively small value between dl1 and dl2 is

selected for dl(vk). Similarly, du(vk), dr(vk), and dd(vk) can be

obtained using the same method.

The method to select the desired MV from Ncan candidate

MVs can be summarized in following procedure form.

1) Set the candidate MV index m=1, record all candidate

MVs from v1 to vNcan.

2) Calculate dl1(vm), du1(vm), dr1(vm), dd1(vm) in the case of

vm according to (3), and calculate dl2(vm), du2(vm), dr2(vm),

dd2(vm) according to (4). Then, determine dl(vm), du(vm),

dr(vm), dd(vm) to grow the final filtering support. 

3) Caculate the WSAD within the final filtering support,

and store it to a one-dimension array wsad as follows:

wsad(m)= WSAD(C, H, vm).

4) Let m=m+1, if m<= Ncan, go to step 2), otherwise, go to

step 5) 

5) The candidate MV with the smallest wsad(m) is

selected as the final MV. 

4. SIMULATION RESULTS

The algorithm in [8] is used as the reference algorithm for

performance comparison. The subblock of size 8x8 is also

used in the reference algorithm for fair comparison.

The filtered MVF of the reference algorithm and that of

the proposed algorithm are respectively shown in the left

sub-picture and the right sub-picture in Fig.6. To evaluate

the accuracy of MVF in real motion sense, we will segment

the image into objects according to the MVF of the

reference algorithm and that of the proposed algorithm. The

accuracy of motion segmentation can reflect the accuracy of

MVF in the real motion sense. Motion segmentation

algorithm in [8] is used in our simulation. The motion

segmentation results of two algorithms are shown in Fig.7. 

Both the MVF results and the motion segmentation

results all prove that the proposed algorithm obtains more

homogeneous MVF than the reference algorithm do.

Fig.6. The resulting MVF of the reference and the proposed algorithms. 

Fig.7. (left): the motion segmentation result of the reference algorithm,

(right): the motion segmentation result of the proposed algorithm.
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