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ABSTRACT

Quantization-based schemes, such as scalar DC-QIM, have

demonstrated performance merits for data-hiding problem, which

is mainly a transmission problem. However, a number of appli-

cations are stated in terms of watermark detection problem (also

named one-bit watermarking), and this situation has been seldom

addressed in the literature for quantization-based techniques. In

this context, we carry out a complete performance analysis of

uniform quantizers-based schemes with distortion compensation

(DC) under additive white gaussian noise. Implementing an ex-

act Neyman-Pearson test and using large deviation theory, perfor-

mances are evaluated according to Receiver Operating Character-

istic (ROC) and probability of error. Optimal DC’s regarding to

ROC performances are derived. It is pointed out that false-alarm

and miss detection capabilities are jointly optimized by the same

DC value. Then, performances are compared with raw quantized-

schemes (i.e. without DC) and spread-spectrum (SS) watermark-

ing. It is shown that DC-QIM always outperforms QIM and SS for

detection task. The gain provided by the DC reaches several orders

of magnitude for cases of interest, that is for low watermark-to-

noise regimes. A short comparison is also provided with respect to

the corresponding transmission problem, thus evaluating the loss

in performance due to the detection.

1. INTRODUCTION

Data-hiding has intensively focused on quantization-based

schemes these last five years. Being inspired by binning coding

strategy, these approaches have demonstrated their ”provably” effi-

ciency [1]. In particular, low-complexity implementations involv-

ing uniform quantizers (namely DC-QIM or the equivalent form

SCS [2]) have been largely studied. The performance of these

systems are usually evaluated according to achievable transmis-

sion rates. For quantized-based systems, each message is associ-

ated to a specific reconstruction set and the distance between these

codebooks is to be maximized in some sense. However, several

practical problems involving watermarking (including steganaly-

sis, semi-fragile watermarking applied to content authentication or

copyright protection) can be formulated more naturally as a de-

tection problem rather than a transmission one [3, 4, 5]. Some of

them cannot even be stated in terms of transmission, due to ap-

plicative constraints (since some signals will not contain any wa-

termark). The problem is then to determine whether an arbitrary

watermark, often named signature, is embedded (one-bit water-

marking) into a noisy content. The natural criterion associated to

this task is the Receiver Operating Characteristic (ROC) but the

overall probability of error can also be illustrative as a represen-

tative point of ROC curve. It is clear that any detection problem

can always be reduced to a binary transmission issue in respec-

tively associating the presence and the absence of the watermark

with two modulation symbols. Detection problems thus involve

a different modulation codebook in which one of the two modu-

lation symbols (i.e. the absence of the watermark) is imposed by

the context. Hence, there is not obvious link between the perfor-

mance attained by these two modulations (transmission/detection).

Whereas detection aspect has been largely treated for spread spec-

trum (SS) embedding schemes [3], this aspect has been seldom

addressed for quantized-based schemes [5, 6, 7, 8], probably due

to the fact that these techniques have been initially introduced for

data-hiding purposes. In particular, [7, 8] have demonstrated that

quantization-based schemes show encouraging improvements over

classical SS watermarking. Eggers et al. [6] first introduced DC-

QIM schemes for detection purposes, showing that this scheme can

also be efficient in a detection context. However, this study adopts

the overall error probability as criterion instead of the more general

ROC criterion. In most detection problems, ROC is of particular

interest since this is the relevant measure to tune the watermark

semi-fragility [3, 5]. On another hand, [6] provides performance

evaluation in a situation where the detector input is a single sam-

ple and actual optimal form of DC has not been given. In this

paper, we propose to fill these gaps, providing a complete study

of DC-QIM scheme with uniform quantizers applied to detection

with white gaussian noise. Performances are evaluated accord-

ing to large deviation theory and are compared with raw quantized

scheme (QIM), SS and the corresponding transmission problem.

2. ONE-BIT SCALAR DC-QIM WATERMARKING ISSUE

First recall the DC-QIM embedding process which has been used

previously in data-hiding problems [1, 2]. Let s ∈ R
N be sam-

ples of an host signal. A watermark is embedded as x = s + w
with w = α mod∆(s − k∆) where α and ∆ are respectively a

scaling factor belonging to [0, 1] and a uniform quantization step

and mod∆(.) denotes the quantization error induced by the cubic

lattice quantizer ∆Z
N . k∆ is a secret external dither sequence

uniformly distributed over the Voronoı̈ cell V0 = [−∆
2

, ∆
2
)N , in-

dependent of s, shared by the embedder and detector. Since s
and k are assumed to be independent, use of dithering [9] ensures

that quantization error signal q = mod∆(s − k∆) remains sta-

tistically independent of the host signal and is forced to be i.i.d.
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uniform over V0, regardless to the host distribution and even if

the high-resolution quantizer assumption is violated. Hence, the

embedded distortion reads Dw
∆
= N−1

E ‖w‖2 = α2∆2/12. x
undergoes an additive i.i.d. centered noise v with variance σ2

v , pro-

ducing signal r. The watermark-to-noise power ratio is defined as

wnr = Dw/σ2
v . The one-bit watermarking issue is defined intro-

ducing the two following hypotheses:

H0 : r is actually not watermarked, i.e. r|H0 = s + v,

H1 : r contains the watermark, i.e. r|H1 = x + v,

and the detector has to decide between both hypotheses. Given a

signal r to be tested and knowing key k, the detector reduces r to

the statistic y = mod∆(r − k∆). Then, the optimal detection

rule based on the Neyman-Pearson criterion is implemented. This

is based on the log-likelihood ratio

Λ(y) = log
Pr(y|H1, k)

Pr(y|H0, k)
(1)

=

N�
n=1

log
Pr(yn|H1, kn)

Pr(yn|H0, kn)

∆
=

N�
n=1

log
p1(yn)

p0(yn)
. (2)

(2) holds since the use of dithering ensures that y is i.i.d. For a

given detection threshold τ , the associated decision rule is

Λ(y)

�
≥ Nτ ⇒ H1

< Nτ ⇒ H0.
(3)

The false-alarm and miss probabilities are respectively

defined as P
(N)
F (τ) = Pr (Λ(y) ≥ Nτ |H0, k) and

P
(N)
M (τ) = Pr (Λ(y) < Nτ |H1, k) . If H0 and H1 have

equal priors and equal costs, another criterion of interest is the

overall probability of error which follows from the Maximum

Likelihood test, i.e. P
(N)
E = 1

2

�
P

(N)
M (0) + P

(N)
F (0)

�
.

• Under H0, the dithering forces each component of the

quantization error y = mod∆(s + v − k∆) to be uniformly

distributed over the Voronoı̈ cell [9]. Hence, p0(yn) = 1/∆ for

yn ∈ [−∆
2

, ∆
2
] and is null otherwise. Expression (2) then reads

Λ(y) = N log ∆ +
�N

n=1 log p1(yn).

• Under H1, one can easily derive the Modulo Lattice Additive

Noise relation y = mod∆ ((1 − α)q + v). q and v being inde-

pendent, probability density function (pdf) p1(yn) of each compo-

nent yn can be computed by a cyclic convolution. Choosing v as

an i.i.d. centered gaussian noise, a simple analysis reveals that for

any α ∈ [0, 1)

p1(yn) =
1

∆(1 − α)

�
i∈Z

Q

�
yn

σv
+ ai

�
− Q

�
yn

σv
+ bi

�
(4)

for yn ∈ [−∆
2

, ∆
2
] and is null otherwise. Here Q(x) =

1√
2π

�∞
x

e−u2/2du, ai = ∆
σv

(i − 1−α
2

) and bi = ∆
σv

(i + 1−α
2

).

3. OPTIMAL DISTORTION COMPENSATIONS

DC has been introduced in Costa’s binning coding strategy for

maximizing the Shannon capacity over gaussian channel with non-

causal side-information. For quantization based schemes, it in-

creases the minimal distance between each quantizer cosets as-

sociated to each transmitted message without increasing the in-

duced distortion [1]. For detection problems, DC can also provide

substantial gain. We propose to determine DC’s which maximize

ROC performances of DC-QIM in presence of gaussian noise.

Note that DC has no obvious reason to be the same as it has

been proposed in data hiding scenario, that is αICS = wnr
wnr+1

in [1] or αSCS = ( wnr
wnr+2.71

)1/2 in [2]. It has been pointed

out in [6] that αSCS remains a ”good” value for keeping P
(N)
E

low when using one sample at the detector input. For nearly

spherical Voronoı̈ cell lattice quantizers, [7] has shown that αICS

maximizes a lower bound on the miss error exponent (which is

defined as EM = limN→∞ − 1
N

log P
(N)
M ) for a given level

of P
(N)
F . We also introduce the false-alarm error exponent as

EF = limN→∞ − 1
N

log P
(N)
F . For a given distortion, we pro-

pose to derive αF and αM which respectively minimizes P
(N)
F

for a fixed upper bound on P N
M (uniformly over all N ) and min-

imizes P
(N)
M for a fixed upper bound on P N

F (uniformly over all

N ). These two tradeoffs respectively arise in an integrity checking

context [5] and for copyright verification application [3]. Unfortu-

nately, error probabilities do not admit any close-form expressions.

Instead and in order to compute these DC’s values independently

of a chosen value of N , we resort to the Stein’s Lemma [11] which

states that, for any Neyman-Pearson test, we have

EF = D(p1||p0) for a fixed upper-bound on P
(N)
M (5a)

EM = D(p0||p1) for a fixed upper-bound on P
(N)
F (5b)

where D(f ||g) =
�

f log(f/g) is the Kullback distance which

is naturally used as a dissimilarity measure between distributions

f and g in hypothesis testing setup. (5a) means that, for a fixed

P
(N)
M , P

(N)
F decays exponentially in the number of observations

(and reciprocally for (5b)). We then search αF and αM which

respectively maximize these decay rates. Since D(p1||p0) �=
D(p0||p1) in our case, note that αF = αM is not trivial1. This

exponential behavior also underlines that using a ”good” (but not

optimal) DC value such as αSCS can have some significant sub-

optimal effect as N grows, which remains not noticeable when

taking N small. For each wnr, these one-dimensional optimiza-

tions have been performed numerically and plotted on Fig. 1. αM

and αF turn out to be very close. Hence, false-alarm and miss

detection capabilities are jointly optimized by the same DC value,

which is practically convenient. The figure also shows the opti-

mal values for a transmission scenario. Resulting DC’s appear to

be a bit less smooth, particularly at high wnr, but globally keep

analogous shapes. Our optimized DC’s are used in the sequel.

4. PERFORMANCE DERIVATION

We now address performance analysis when using N samples at

the detector input. In order to measure the gain provided by dis-

tortion compensation, we also propose to compare to QIM (i.e.
α = 1) and SS cases.

4.1. DC-QIM Performances

The considered hypothesis testing problem does not provide exact

calculation of performances. We resort to fair performance esti-

mates to analyse the system. By considering the log-likelihood (2)

as a sum of N i.i.d. variables, the Central Limit Theorem could

1More generally, ROC curves are generally not symmetrical around the
diagonal for quantized-based schemes [7], contrary to SS schemes.
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Fig. 1. Optimal distortion compensations αM (wnr) and

αF (wnr). αICS and αSCS are also depicted.

be applied to model Λ(y) as a normal process under both hy-

potheses and then estimate P
(N)
F and P

(N)
M . However, it is known

[10] that this approach leads to poor accuracy for large deviations
Nτ−E(Λ(y)|Hi,k)√

Var(Λ(y)|Hi,k)
, i ∈ {0, 1}, that is for small error probabilities.

Instead, we prefer to make use of some more reliable estimates

based on the logarithm of the moment-generating function of Λ(y)

defined as µ(s) = log
�
V0

esΛ(y)Pr(y|H0, k)dy, s ∈ [0, 1]. In

our case, we have µ(s) = −Nλ(s) with λ(s) = (1 − s) log ∆ −
log

� ∆
2

−∆
2

p1(y)sdy. This quantity, which is closely related to the

Chernoff Distance, can be shown to be concave in s. Whenever N
becomes large, it can be shown that [11]

P
(N)
F � 1

s
�−2πNλ′′(s)

e
−N

�
sτ+λ(s)

�
(6)

P
(N)
M � 1

(1 − s)
�−2πNλ′′(s)

e
−N

�
(s−1)τ+λ(s)

�
(7)

where s is chosen so that λ′(s) = −τ is met. λ′(s) and λ′′(s) are

the first and the second derivatives of λ(s) with respect to s. This

leads to

P
(N)
E � 1

2s0(1 − s0)
�−2πNλ′′(s0)

e−Nλ(s0)
(8)

where s0 verifies λ′(s0) = 0. Fig. 2 assesses the validity of the

proposed estimates.

4.2. QIM Performances

The case α = 1 is singular for pdf (4). However, as α
tends to one, quantity bi − ai tends to zero and each term in

sum (4) can be viewed as the first derivative value of func-

tion −Q at point (i∆ + yn)/σv . Hence, it comes p1(yn) =

(2πσ2
v)−1/2�

i∈Z
exp(− (i∆+yn)2

2σ2
v

) for yn ∈ [−∆
2

, ∆
2
] and is

null otherwise. (P
(N)
M , P

(N)
F ) and P

(N)
E for QIM are derived ac-

cording to the same method as in the DC case.

4.3. SS Performances

Since host-interference rejecting capability does not hold for SS,

performances [3] depend on host signal. It is assumed that s is

Fig. 2. Estimated and experimental ROC curves for DC-QIM with

N = 64 and wnr = 0 dB. Our optimized DC has been used.

i.i.d. centered gaussian, with variance per component σ2
s . We de-

fine the signal-to-noise power ratio by snr = σ2
s/σ2

v . Watermark

w is generated by a centered pseudo-random sequence such that

N−1 ‖w‖2 = Dw. Thus, we have r|H1 ∼ N �
w, (σ2

s + σ2
v)IN

�
and r|H0 ∼ N �

0, (σ2
s + σ2

v)IN

�
where IN denotes the N ×

N identity matrix. Likelihood ratio test then reads Λ(r) =

log Pr(r|H1)
Pr(r|H0)

and it is straightforward to establish that P
(N)
M =

Q
��

Nwnr
1+snr

− Q−1(P
(N)
F )

�
and P

(N)
E = Q

�
1
2

�
Nwnr
1+snr

�
.

5. PERFORMANCE COMPARISON

We now compare performances of the three considered schemes.

We also recall the performance of the data-hiding version of the

DC-QIM [1] also evaluating with large deviation techniques. In

terms of ROC and P
(N)
E , DC-QIM (with a DC suitably optimized)

always outperforms QIM and SS for all wnr and for all N , particu-

larly for wnr’s of interest, i.e. low and medium wnr’s (see Figs. 3,

4, and 5). For wnr = 0 dB, it is shown that DC-QIM with 64 sam-

ples in the detector outperforms QIM with 256 samples. Moreover,

for wnr = 0 dB and for N = 64, P
(N)
E for DC-QIM, QIM and

SS are respectively 3.3×10−3, 0.13 and 0.35, illustrating that DC

provides improvements of several orders of magnitude. For high

wnr’s, DC-QIM and QIM tend to be equivalent since α tends to

one. As a typical result, DC-QIM achieves both false-alarm and

miss probabilities of about 10−8 for N = 256, which corresponds

to the (relatively small) surface of 4 DCT blocks of 8 × 8 pixels.

This stands as a promising point for practical image watermark-

ing [5]. One can note that SS with snr = 20dB performs better

than QIM with respect to the probability of error for wnr lower

than about −2.6 dB (see Fig. 5). On this limit, QIM and SS ROC

curves provide equivalent performances. Above this value, QIM

performs better. For low wnr’s (< −4 dB), QIM turns out to per-

form very poor with a probability of error constantly close to 0.5.

Without use of DC, QIM becomes unusable for low wnr’s.

As mentioned before, our problem can be viewed with a mod-

ulation point a view. The use of DC-QIM as a detection sys-

tem involves a particular binary modulation (say ’0’ is coded by

the null symbol and ’1’ is coded by a DC-QIM symbol of power

Dw) where the two symbols are assumed to be equally likely. For

N = 1, Eggers [6] already noticed that this modulation is less effi-
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Fig. 3. ROC curves for DC-QIM, QIM and SS with N = 64 and

N = 256 (wnr = 0 dB and snr = 20 dB).

Fig. 4. P
(N)
E with respect to N for DC-QIM, QIM, SS and trans-

mission versions of DC-QIM (wnr = 0 dB and snr = 20 dB).

cient than the one used for data-hiding application (where the two

messages are coded by two rival DC-QIM symbols). For evaluat-

ing this gap when N increases, we have basically two approaches:

(i) the watermarking context imposed a maximal distorsion for

perceptual reasons. Then, for N = 64 and wnr = 0 dB, the

transmission version of DC-QIM performs a probability of error

of 1.4 × 10−8whereas we have 3.3 × 10−3 in the detection ap-

plication. (ii) for a fair comparison of modulations, a communica-

tion context generally imposes to transmit with constant average

power. In this case, note that the average transmitted power in the

detection case is (0 + Dw)/2 thus the symbols transmitted in the

transmission context should have power of Dw/2. The transmis-

sion probability of error is now 1.3 × 10−4 and the gap is notably

reduced. However, it is likely that applicative considerations will

forbid the use of such a high power in the detection problem, since

the distortion in presence of watermark would become perceptible.

6. CONCLUSIONS AND PERSPECTIVES

We have investigated the performances of uniform quantized-

based schemes using distortion-compensated principle applied to

one-bit watermarking. To achieve the watermark detection, exact

Fig. 5. P
(N)
E with respect to wnr for DC-QIM, QIM, SS and

transmission versions of DC-QIM (N = 64 and snr = 20 dB).

likelihood ratio test has been implemented. We have established

that the optimal distortion compensation factor for the considered

context is analogous to ones shown to be optimal in data-hiding

context. Besides, it has been pointed out that false-alarm and miss

detection capabilities are jointly optimized by the same DC value.

Then, using large deviation theory, we have derived system per-

formance profile. Regarding to both ROC and probability of error

criteria, DC-QIM always outperforms QIM and SS. It has been un-

derlined that DC improves significantly quantized-based schemes,

particularly in the range of wnr of interest, that is 0 dB. For low

wnr’s, the used of DC is even needed to ensure better perfor-

mance than spread spectrum embedding. Such as in data-hiding

context, the perspective of using more sophisticated lattice quan-

tizers [7] than the elementary cubic structure promises potential

performance gain.
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