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ABSTRACT

We introduce a set theoretic framework for quantization index
modulation (QIM) watermarking and illustrate its potency by de-
signing a semi-fragile watermark that is both visually adaptive and
tolerant to compression. We determine the watermarked image to
satisfy the multiple constraints of watermark detectability, imper-
ceptibility and robustness to compression using the method of pro-
jections onto convex sets (POCS). Mark embedding is performed
through implicit quantization of statistical features, specifically the
mean, of randomly selected pixel locations from the image. This
is accomplished by defining a detectability constraint set that im-
poses the quantization constraint. We present experimental re-
sults demonstrating the efficacy of the technique in the presence
of JPEG compression.

1. INTRODUCTION

Quantization index modulation (QIM) watermarking methods
have attracted considerable attention since their introduction by
Chen and Wornell [4] because of the superior capacity-distortion
performance of these methods. Incorporation of additional con-
straints such as visual adaptability and robustness against signal
processing operations, however, poses special challenges for these
techniques in comparison to the spread spectrum watermarking
methods introduced earlier. In this paper, we address this issue
by extending the recently introduced set-theoretic watermarking
framework [9, 10, 11] to QIM embedding. Set-theoretic water-
marking allows the flexible incorporation of multiple requirements
inherent in watermarking systems as feasibility constraints on the
watermarked image. The embedding methods proposed within this
framework thus far have addressed spread spectrum watermarks
and have demonstrated the utility of the framework for multiple
watermark insertion, linear transform domain watermark insertion,
host-interference cancellation and visual adaptation. Here we in-
troduce additional constraint sets and demonstrate that the same
benefits can be extended to QIM watermarks.

Our watermark insertion randomly selects pixel locations
within the image and quantizes the average of these pixel values to
embed information. We deliberately choose spatial averages to ex-
ploit the mean preserving property of compression operations. The
quantization is implicitly performed by projecting onto the set of
images for which the mean matches the desired embedding value.
The embedded watermark “noise” is similarly shaped implicitly
by projecting on to suitable sets that define imperceptibility and
robustness to compression. The method of successive projections
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is utilized to obtain a solution that meets all constraints simultane-
ously. In prior work, information embedding in statistical features
has been proposed for robust watermark insertion [13]. Compared
to the optimization algorithm employed there for the quantization
of image regions, our method exploits the power of the simple set-
theoretic framework to employ more of the constraints and more
detailed constraints that encapsulate the imperceptibility and ro-
bustness criteria.

2. OVERVIEW OF SET THEORETIC WATERMARKING
AND POCS

Set theoretic watermarking [9, 10, 11] represents each property
desired of the watermarked image as a constraint set. A water-
marked image is then determined using an iterative algorithm that
determines a point in the intersection of all the sets. [14] When
the sets are convex the method of POCS provides a robust algo-
rithm for this purpose. Given n convex sets {Si}n

i=1 the POCS
method determines a point in their intersection in the limit of pro-
jection sequence. If the intersection set is non-empty, the sequence
{fk}∞k=0 generated by successive (relaxed) projections onto the
sets converges to a point in the intersection, where

fk+1 = (TSn(TSn−1 ...TS1(fk)...)), k = 0, 1, .. (1)

TSi = (1 − λSi)I + λiPSi , 0 < λi < 2 is the relaxed pro-
jection operator onto set Si . For unity relaxation TSi(fk) will be
equal to PSi(fk), which is set to be in the rest of this paper.

Fig. 1. A generic illustration of semi-fragile watermarking by
POCS. [10]
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Figure 1 illustrates the general notion of watermark insertion
by POCS. The domain is a Euclidean space with dimensions of
the cover file where watermark is inserted. Successive projections
onto detectability, imperceptibility and robustness to compression
provides image adaptive semi-fragile watermark embedding.

3. CONSTRAINTS FOR QIM WATERMARK
EMBEDDING

QIM is an efficient high capacity watermarking method [4]. In its
general form, QIM embeds a M -ary message by quantizing the
signal (or a suitable statistics of the signal) using one of M quan-
tizers. Dithering by a key-dependent pseudo-random sequence
chosen from a uniform distribution improves the security and effi-
ciency of the system further.

Various modifications have been proposed for QIM based wa-
termarking algorithms. Most recently an adaptive QIM scheme is
proposed that adapts the quantization bins to the visual complexity
of the image [15]. The adaptation of the bins, however, trades-off
robustness against noise particularly in smooth image regions.

Here we propose another method for image adaptive QIM wa-
termark embedding using the set theoretic watermarking frame-
work [9, 10, 11]. The watermarking is implicitly performed by
determining the watermarked image as a feasible point meeting
detectability constraints and fidelity constraints, the latter being
formulated as both pixel-wise and overall constraints. Successive
projections on to convex sets (POCS) is utilized for this purpose.
The individual components of the quantized metric adapt accord-
ing to the constraints imposed by the fidelity criteria.

A general framework for set theoretic watermarking has al-
ready been proposed [9, 10, 11], where the framework was
demonstrated with spread-spectrum (SS) embedding. In this pa-
per, we extend the method to QIM. The current work differs from
set-theoretic spread-spectrum watermark embedding in the water-
mark detectability set and robustness to compression set. We de-
fine these sets for QIM below and provide the associated projec-
tion operation operators. The remaining constraints are same as
spread-spectrum scenarios explained in [11]. Readers are referred
to these references for details on the projections for these sets.

3.1. Detectability and robustness

If X∗ ∈ RM×N denotes the image with dimensions M × N ,
we denote X = vec(X∗) ∈ RMN as the vectors obtained by
stacking together the columns of each. We will adopt the notation
in terms of 1-dimensional vectors throughout and assume that any
image operators are also represented as matrices/functions confor-
mal with the vector representation.

We randomly choose L locations within the image to form a
sample vector Y for each of N bits. For every bit embedding, the
mean of the selected locations are quantized. Let Y0 denote the
value of the vector Y in the original image. We use subtractive
dithered scalar quantizer to quantize the mean values µi to obtain
µq

i :

µi =
1

L
1T Y0 (2)

where 1 is an L × 1 vector of 1’s.

µq
i = Q(µi + di + bi∆, ∆) − di i = 1, .., N (3)

Here bi represents the message bit to be embedded, Q is
the integer scalar quantizer with ∆ as scaling parameter and di

is pseudo-random scalar dither which is assumed iid uniformly-
distributed between −∆/2 and ∆/2.

The embedding process outlined above is readily incorporated
into a set-theoretic watermarking method using a Quantization-
based detectability set defined as:

Si
1 ≡ {Y :

1

L
1T Y = µq

i } i = 1, .., N (4)

The definition of (4) assumes watermark embedding in the
spatial domain. However, method is generic in nature and can be
applied to most transform domains for possible attractive proper-
ties of them. For any linear transform domain, the convexity will
be preserved and a similar set can be defined in that context.

Projection of Y onto S1 is given by

P1(Y ) = arg min
Z∈Si

1

‖ Z − Y ‖2

The Lagrangian [16] for this constrained optimization problem
can be written as:

L =‖ Z − Y ‖2 +λ
1

L
1T Y − µq

i (5)

The Lagrange parameter is readily shown to be

λ =
2Y T Y − 2µq

i L
1
L

1T Y �= µq
i

0 otherwise
(6)

The projection can then be expressed in terms of the Lagrange
parameter as

P1(Y ) = Y − λ

2L
(7)

Thus the projection operation modifies each of the chosen
pixel locations by λ/2L. However, note that in the overall al-
gorithm this represents a single step and the imperceptibility set
(to be defined) will shape the watermark according to the other
constraint sets (e.g. visual and compression). Since compression
is a mean preserving operation, some robustness to compression
is assured as a by-product of the embedding in the mean of a se-
lected spatial region. Additionally, we incorporate robustness to
compression as a set in Section 3.3.

3.2. Watermark imperceptibility

An important characteristic of watermarks is their imperceptibility
within the cover. The watermarked image should look identical
(or similar) to the original image. Set theoretic framework allows
us to employ multiple visual models at the same instance. We
incorporate the visual fidelity requirement of image through two
constraints: a frequency domain based overall visual fidelity con-
straint captured by a linear visual system model and a pixel-wise
image fidelity constraint determined in terms of a noise visibility
function.

Overall Image Fidelity Constraint:
Human observers are more sensitive to changes at low spa-

tial frequencies than high frequencies. We can approximate this
behavior by assuming that the perceived image by assuming that
the perceived image in response to an input image X is given by
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HX where H represents a 2-D spatial low-pass filter1. Euclidean
distance between the perceived watermarked image HX and the
perception of the original image HX0 should be small (where X0

denotes the original image). Using the Euclidean norm for quanti-
fying the difference, the constraint therefore becomes,

S2 ≡ {X : ‖ HX − HX0 ‖≤ θ} (8)

where ‖ v ‖ represents the Euclidean norm of v and θ is a suit-
ably chosen threshold.The spatial filter H is determined by the
specific visual system model employed. In particular, we employ
the model proposed by Mannos et al [19], which has been exten-
sively utilized in image processing research [11].

Pixel-wise Image Fidelity Constraint:
Since the overall fidelity constraint (8) is based primarily on

psychophysical data for individual sinusoidal stimuli, it does not
adequately handle localized perturbations of the image in a small
area. Therefore, we use an additional model to limit local perturba-
tions to ensure imperceptibility. Our model exploits the perceptual
phenomenon of spatial masking [20] in which perturbations intro-
duced in an image region at a frequency are masked by stronger
image content at similar frequencies. In particular, we use the spa-
tial domain texture masking model proposed by Pereira et al [17].
Given an original image, the model predicts the allowable distor-
tion at each pixel level that is visually tolerable, leading in turn
to pixel-wise upper and lower bounds for the difference from the
original image. The resulting constraint can be expressed as:

S3 ≡ {X : DL ≤ (X − X0) ≤ DU} (9)

where DU and DL are the same size as X and represent the pixel-
wise upper and lower bounds on the distortion, X0 is the original
image, and the inequalities in (9) apply term-wise. The constraint
can alternately be expressed as S2 = {X : U ≤ X ≤ L} where
U = X0 + DU and L = X0 + LD form for pixel wise upper and
lower bounds [11].

3.3. Robustness to compression constraint

Motivated by the observation that typical transform coding
schemes provide coding gain through the compaction of signal
energy into a few coefficients, we approximate the robustness to
compression set by the following :

Ŝ4 ≡ {X : S(TI(Q0[TF (X)])) = µq
i } (10)

where TF denotes the operator that transforms from the spatial do-
main to the transform domain (e.g. DCT for JPEG), TI denotes the
corresponding inverse transform (e.g. IDCT for JPEG), S refers to
the random selection matrix such that Y = SX , overline refers
to mean of the variable and Q0[ ] refers to the “quantizer” de-
termined from the original image X0 by defining its constituent
scalar quantizers as

Qk
0 [t] =

0 if Qk[(TF (X0))k] = 0
t otherwise

; k = 0, . . . , MN − 1.

(11)
where (TF (X0))k denotes the kth transform coefficient of the
original image X0. Thus the quantizer Q0[ ] sets the transform

1The visual system also includes a significant point-wise non-linearity.
Common digital image representations, however, already include a com-
pensation for this nonlinearity [18] and its effect can therefore be ignored
with minimal error.

coefficients that are zero in Q[TF (X0)] to zero and leaves other
coefficients unchanged. This approximation has the underlying
assumption that the transform coefficients that is quantized to zero
cause the major loss of watermark information. We can read-
ily see that for our definition of Q0[ ], we have Q0(Z + Y ) =
Q0(Z) + Q0(Y ). Hence from the linearity of the transformation
TF the convexity of the set follows immediately.

4. EXPERIMENTAL RESULTS

We use the USC image set to illustrate the performance of the set-
theoretic QIM watermarking scheme. The set consists of eight 8-
bit gray-scale image of size 512×512 pixels. For our set theoretic
watermarking method, the parameters for the constraint sets are
set as follows. The quantization parameter ∆ is chosen to be 4 and
sample size L for mean computation is chosen as 100. The bound
for the overall image fidelity threshold [19] is set at θ = 10 and
values of P0 = 30 and P1 = 3 are used for the pixel-wise image
fidelity parameters [17]. For our examples, we embedded 1000
bits, each utilizing QIM of the mean of L = 100 independently
and randomly selected locations.

The watermarked images are obtained by using the iterative
POCS method to satisfy all the imposed constraints. The visual
quality of the watermarked images obtained is illustrated using the
Peppers image in figures 2(a) and 2(b), where the former repre-
sents the original image and the latter the image with the 100 bits
embedded using the proposed technique. It can be seen that the
watermarked image maintains a high degree of visual fidelity to
the original as required by the imperceptibility constraints.

(a) Original peppers image

(b) Watermarked peppers image
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Table 1. Summary of watermark detection results across 8 images in the USC Image database at various JPEG compression levels. In each
image, 1000 bits are embedded and total number of bit errors (out of 8000) are reported.

Samp. L Q = 90 Q = 80 Q = 70 Q = 60 Q = 50 Q = 40 Q = 30 Q = 20 Q = 10
10 232 842 1182 1431 1648 1914 2347 2840 3750
50 0 26 66 133 218 313 519 984 2345
100 0 2 8 24 49 88 166 434 1541

For the parameters and the image from the USC database, the
POCS iterations for the watermark embedding converge to a fea-
sible solution in typically 200 iterations. This takes approximately
40 minutes on a Pentium M 1.70 GHz machine with a Matlab im-
plementation.

Table 1 illustrates the performance of the watermark in the
presence of compression. Note that the method gains robustness
against compression both from the embedding within the mean and
from the robustness to compression constraint set. In the absence
of the constraint set, significantly poorer performance is obtained.

5. CONCLUSION

In this paper we extended the set theoretic watermarking frame-
work [9, 10, 11] to semi-fragile QIM based watermarking. We
introduced new constraint sets for detectability of QIM and robust-
ness to compression. Combining these with constraint sets for im-
perceptibility defined in earlier work, we formulated QIM water-
mark embedding as a feasibility problem with multiple constraints
and developed an algorithm for watermark embedding using the
method of projections onto convex sets (POCS). Specifically, the
watermarking scheme automatically and implicitly handles quan-
tization of statistics of the image, ensures visual fidelity, and pro-
vides robustness against mild JPEG compression. The technique
further illustrates the power and flexibility of the set-theoretic wa-
termarking framework.
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