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ABSTRACT

In this paper, we propose the use of non-negative ma-
trix factorization (NMF) for robust image hashing. In par-
ticular, we view images as matrices and the goal of hash-
ing as a randomized dimensionality reduction that retains
the essence of the original image matrix while preventing
against intentional attacks of guessing and forgery. Our
work is motivated by the fact that standard-rank reduction
techniques such as the QR, and Singular Value Decompo-
sition (SVD), produce low rank bases which do not respect
the structure (i.e. non-negativity for images) of the origi-
nal data. We observe that NMFs have two very desirable
properties for secure image hashing applications: 1.) The
additivity property resulting from the non-negativity con-
straints results in bases that capture local characteristics of
the image, thereby significantly reducing misclassification,
and 2.) the effect of geometric attacks on images in the spa-
tial domain manifests (approximately) as independent iden-
tically distributed noise on NMF vectors, allowing design of
detectors that are both computationally simple and at the
same time optimal in the sense of minimizing error prob-
abilities. ROC (receiver operating characteristics) analysis
over a large image database reveals that the proposed al-
gorithms significantly outperform existing approaches for
robust image hashing.

1. INTRODUCTION

An image hash function maps an image to a short binary
string based on the image’s appearance to the human eye.
In particular, a perceptual image hash function should have
the property that two images that look the same to the hu-
man eye map to the same hash value, even if the images have
different digital representations; e.g., being separated by a
large distance in mean squared error. This differentiates
a perceptual hash from traditional cryptographic hashes,
such as SHA-1 and MD-5 [1]. SHA-1 and MD-5 hashes are
extremely sensitive to the input data, i.e., a one bit change
in the input changes the output dramatically.

An immediately obvious application for a perceptual im-
age hash is identification/search of images in large databases.
Several other applications have been identified recently in
content authentication, watermarking [2], and anti-piracy
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search. Unlike traditional search, these scenarios are adver-
sarial, and require the hash to be a randomized digest.

The underlying techniques for constructing image hashes
can roughly be classified into methods based on image statis-
tics [3], [4] [5], relations [6], [7], preservation of coarse image
representation [8], [9], [10], and low-level image feature ex-
traction [11], [12]. A common shortcoming of the schemes
in [3] - [11] (excluding [10]) is poor robustness to geomet-
ric attacks, particularly lossy ones like cropping. While the
singular value decomposition (SVD) based hashing scheme
in [10] exhibits good geometric attack robustness, it does so
at the expense of significantly increasing misclassification,
i.e., different images mapping to similar hash values.

In this paper, we develop robust image hashing algo-
rithms based on a recently-proposed dimensionality reduc-
tion technique by Lee et al. called non-negative matrix fac-
torization (NMF) [13]. Our work is motivated partly by
the SVD-based image hashing scheme proposed recently in
[10]. NMF is distinguished from traditional matrix approx-
imation methods by its use of non-negativity constraints.
These constraints lead to a parts-based representation be-
cause they allow only additive, not subtractive, combina-
tions. This is in contrast with SVD, which learns holistic
and not parts-based representations. An immediate conse-
quence of this property with respect to hashing, is far less
misclassification (perceptually distinct images mapping to
similar hash values) when NMF (instead of SVD) is em-
ployed for dimensionality reduction. In addition, we ob-
serve that geometric distortions on images result in approx-
imately additive and independent, identically distributed
noise on NMF vectors. We exploit this property to obtain
pseudo-random linear statistics of NMF vectors, which sig-
nificantly enhances hash robustness while allowing the hash
to be of an acceptably small length for most practical ap-
plications.

The rest of this paper is organized as follows. Section
2 provides background on non-negative matrix factoriza-
tions. Section 3 describes our proposed hash algorithms.
We present two variants: the NMF-NMF and NMF-NMF-
SQ hashing schemes. Experimental results in the form of re-
ceiver operating characteristic (ROC) curves are presented
in Section 4. Section 5 summarizes the contribution of the
paper and provides directions for future work.
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2. NMF : BACKGROUND AND THEORY

Given a non-negative matrix V of size m × n, NMF algo-
rithms seek to find non-negative matrix factors W and H
such that

V ≈ W · H, where W ∈ Rm×r and H ∈ Rr×n.

Equivalently, we have

vj ≈ W · hj , vj ∈ Rm hj ∈ Rr, 1 ≤ j ≤ n,

where {vj}n
j=1 and {hj}n

j=1 denote columns of V and H, re-
spectively. For the class of non-sparse matrices, this factor-
ization provides a reduction in storage whenever the number
of vectors r, in the basis W is chosen such that r < mn

m+n
.

In practice, r is usually chosen such that r � min(m, n).

2.1. NMF Cost Functions and Algorithms

To find an approximate factorization, V ≈ WH, we first
need to define cost functions that quantify the quality of
the approximation. In the NMF literature, two popular cost
functions have been studied. First is the classical Euclidean
distance or Frobenius norm, given by

ΘE(W, H) ≡
(

n∑
j=1

‖ vj − Whj ‖2
2

)1/2

= ‖ V − WH ‖F

(1)
Another measure commonly used in practice is,

ΘD(V ‖ WH) ≡
m∑

i=1

n∑
j=1

(
Vij log

Vij

[WH]ij
− Vij + [WH]ij

)
,

(2)
which is known as the generalized Kullback-Leibler (KL)
divergence. It reduces to the standard KL divergence, or
relative entropy, when

∑
ij

Vij =
∑

ij
[WH]ij = 1, so that

the matrices can be regarded as normalized probability dis-
tributions.

The lack of convexity of the aforementioned costs in
both factors W and H implies that it is unrealistic to ex-
pect a computationally efficient algorithm to find a global
minimum. Using an approach analogous to Expectation-
Maximization (EM) algorithm, Lee and Seung [13] devel-
oped algorithms commonly used to obtain NMFs.

2.2. Known NMF Results and Properties

Using this representation, we see that the left factor W con-
tains a basis used for the linear approximation of V . The
right factor H is a coefficient matrix used to add up com-
binations of the basis vectors in W . The non-negativity
constraint on W allows us to visualize the basis columns in
the same manner as columns in the original data matrix.
This is the first benefit of NMF versus alternative factoriza-
tions like the SVD, where the basis vectors contain negative
components that prevent similar visualizations.

The second, and very desirable, benefit of NMF is the
structure of the resulting basis. For applications typically
used, this basis will be r conceptual or representative enti-
ties stored in the columns of W that can sum up to (approx-
imately) reconstruct the original data matrix. In particular,

(a) Original clinton image (b) Locally tampered ver-
sion

Figure 1: Original and tampered versions of the clinton
image.
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Figure 2: L2 norm of the difference between corresponding
SVD and NMF vectors of: clinton and lena images, clinton
image and its attacked/distorted version with JPEG com-
pression QF = 10, clinton image and its tampered version.
Horizontal axis denotes the SVD/NMF vector index.

the non-negativity constraint means we obtain a basis con-
taining interesting local features.

In the past, NMF has been applied with promising suc-
cess to image classification [14], [15], text characterization
[16], and even to de-construct music tones [17]. In this
work, motivated by the ability of NMF to capture mean-
ingful local components of the image matrix, we apply it to
the robust image hashing problem. The next Section details
the construction of our hash algorithms.

3. PROPOSED HASH ALGORITHMS

We first present some experimental observations that fur-
ther motivate the use of NMF for image hashing, and also
provide insight for the construction of our hash algorithms.
Fig. 1 (a) shows the original 512 × 512 image of a former
US President and the First Lady (clinton image). Fig. 1
(b) then shows a tampered version of the image in Fig. 1
(a) in which a malicious change is made to the First Lady’s
face. We obtain a rank 25 factorization of each of these
images via both SVD and NMF. We also obtain rank 25
decompositions via SVD and NMF for the 512 × 512 lena
image. This results in 25 left and right vectors (of length
512) for both SVD and NMF. Fig. 2(a) plots the L2 norm
of the difference between corresponding left singular vec-
tors of: 1.)clinton and lena images, 2.)clinton image and
its compressed version (JPEG QF = 10), and 3.) clinton
image and its tampered version in Fig. 1 (c). The same is
repeated for NMF in Fig. 2 (b). The ability of NMF to cap-
ture robust local components is now readily apparent. In
particular, it may be seen that SVD views JPEG compres-
sion (an allowable distortion), and local tampering (content
change) as approximately the same. This distinction how-
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ever, is clearly made in the case of NMF. Quantitatively,
this is because the orthogonality constraints in SVD means
that the singular vectors provide a holistic basis and hence
ignore local changes.

3.1. NMF-NMF Hashing

A secret key is used as the seed of a cryptographically se-
cure pseudo-random number generator that is employed for
randomizing all steps below.

1. Given an image I, pseudo-randomly select p subim-
ages Ai ∈ Rk×k, 1 ≤ i ≤ p.

2. Obtain a rank r1 NMF from each sub-image (r1 � k)

Ai ≈ Wi · F T
i , 1 ≤ i ≤ p. (3)

where {Wi} and {Fi} are all k × r1. This results in
2p NMF matrices of size k × r1 each.

3. Pseudo-randomly arrange these matrices to obtain a
secondary image J of size k × 2pr1.

4. Re-apply NMF to obtain a rank r2 representation of
J , r2 � min(k, 2pr1)

J ≈ W · H (4)

where W is k × r2 and H is r2 × 2pr1.

5. The concatenation of columns of W and rows of H
gives the hash vector hNMF−NMF

K (I).

We employ NMF on pseudo-random (PR) image re-
gions for security reasons. A two-stage cascade algorithm
was constructed because we observe experimentally that it
serves to significantly enhance hash robustness.

3.2. NMF-NMF-SQ Hashing

1. Obtain the NMF-NMF hash vector hNMF−NMF
K (I)

as in the previous sub-section. Let N be the length
of hash vector.

2. Generate pseudo-random weight vectors {ti}M
i=1 (with

M � N) such that each ti is of length N . The
resulting hash vector of length M is given by {<
hNMF−NMF

K (I), t1 >, ..., < hNMF−NMF
K (I), tM >},

where < a,b > denotes the inner product (which in-
duces the Euclidean norm) of vectors a and b.

The motivation for the inner product step is to reduce
the size of the hash vector. Consider for example, applying
the NMF-NMF hashing algorithm to a 512 × 512 image,
with p = 10, k = 200, r1 = 5 and r2 = 5. This would result
in a hash vector of length N = 1500. With floating point
storage for each entry, such hash lengths are impractical.
This is also a problem with the SVD based hash [10].

We must emphasize however, that the design of the
weight vectors ti should be done carefully so that the per-
ceptual qualities of the hash are retained. Under a given
attack A on the image I, we may model the NMF-NMF
hash vector as hNMF−NMF

K (A(I)) = hNMF−NMF
K (I) +nA.

In particular, we observed that the components of nA are
approximately i.i.d under a large class of geometric distor-
tions/attacks on the image. For our purposes hence, we

(a) (b)

Figure 3: Attacked versions of the lena image. (a) rotation
by 15o, 15% cropping, resizing and JPEG QF = 10, (b)
rotation by 25o, 30% cropping, resizing, JPEG QF = 10,
contrast adjustment and strong Stirmark random bending.

picked each ti to have i.i.d Gaussian components of zero
mean and unit variance. If the noise were to be highly
correlated (as is the case with other representations such
as wavelets, SVD vectors), the design of the weight vec-
tors would be much harder. Picking weight vectors pseudo-
randomly with i.i.d components also enhances the security
of the hash. Further, they were chosen to be Gaussian be-
cause for a given variance, the Gaussian random variable
has the maximum differential entropy.

4. EXPERIMENTAL RESULTS

For results presented next, the NMF-NMF-SQ hash algo-
rithm was employed with p = 25, k = 100, r1 = 2, r2 = 2,
and hash length M = 64. Further, all images were resized
to 256 × 256 via bicubic interpolation prior to hashing.

Fig. 3 shows two geometrically attacked versions of the
lena image. The attack in Fig. 3 (a) is rotation by 15o, 15%
cropping, resizing and JPEG compression with QF = 10,
and in Fig. 3 (b) is rotation by 25o, 30% cropping, resizing,
JPEG with QF = 10, random contrast enhancement and
strong Stirmark [18] random bending. For each attack, we
generated hash vectors for 100 different images picked ran-
domly from an image database of 4000 images, and 100 dif-
ferent secret keys. This would result in 10000 pairs of hash
vectors corresponding to original and attacked images, and
another 10000 pairs corresponding to completely different
images.

A robust hash is desired to have the property that when
I is perturbed by an attack, the hash is not changed much,
or in other words ‖ hK(I)−hK(A(I)) ‖< τ with high proba-
bility. Similarly, if two distinct image I and I ′ are compared
then, it is desired that ‖ hK(I) − hK(I ′) ‖> τ with high
probability. Here, ‖ · ‖ denotes a meaningful notion of dis-
tance on the difference of hash vectors. We utilized the L2
norm, but other measures are possible. Two types of errors
are hence possible: the event of ‖ hK(I) − hK(A(I)) ‖> τ

denoted by “miss”, and ‖ hK(I)− hK(I
′
) ‖< τ denoted by

“false alarm”.
Fig. 4 (a) then plots for the attack in Fig. 3 (a), the dis-

tance between hash vectors of altogether different images,
and the distance between hash vectors of original and at-
tacked images. It is evident from Fig. 4 (a) that there is
no overlap between the solid and dotted plots which means
that no errors were observed. Fig. 4 (b) then shows ROC
curves for the second attack in Fig. 3 (b). We compare
with 1.) hash algorithm based on quantization of pseudo-
random statistics of wavelet coefficients [2] which we term
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Figure 4: (a) Vertical axis is the distance (L2 norm) be-
tween hash vectors of original and attacked images (solid),
and altogether different images (dotted); Fig. 3 (a) shows
an example attacked image. Horizontal axis represents the
sample index. For this experiment, 100 randomly picked
images and 100 secret keys were used resulting in a total
10000 samples. (b) ROC curves for the attack in Fig. 3 (b).

as PR-SQ hashing, and 2.) SVD based image hashing [10].
For both of these schemes, the hash vector was designed to
be of length 150 (we did this to give more advantage to the
two hash algorithms we compare against).

It is clear from Fig. 4 (b) that both the miss (PM ) and
false alarm (PF ) probabilities are orders of magnitude lower
for the proposed NMF-NMF-SQ hash algorithm. Note fur-
ther that the geometric attack in Fig. 3 (b) is in fact not
even perceptually acceptable. The reason we show ROC
curves for such an attack is because for most perceptually-
acceptable attacks such as the one in Fig. 3 (a) our hash
algorithm did not incur any errors.

5. CONCLUSIONS AND DISCUSSIONS

We introduce a new pseudo-random signal representation
based on non-negative matrix factorizations (NMF) and
apply it to the robust perceptual image hashing problem.
We make the following crucial observation: the success of
hash algorithms based on low-rank matrix approximations
depends largely on the constraints employed in obtaining
the approximation. We establish that the non-negativity
constraints in NMF are much better suited for perceptual
hashing than the orthogonality constraints in traditional
decompositions, like SVD. Future work may explore appli-
cations of our current hash algorithm in anti-piracy search,

image authentication, and watermarking.
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