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ABSTRACT

A key to accomplish articulated human motion tracking and other
high-dimensional visual tracking tasks is to have an efficient way to
draw samples from the state space. The typical particle filter method
and most of its variants do not perform well in achieving this goal.
To solve the problem we present a novel algorithm, namely the Dif-
ferential Evolution - Markov Chain (DE-MC) particle filtering. It
substantially improves the core of traditional particle filter, i.e. the
sampling strategy. As a result, we can obtain reasonably distrib-
uted samples in an efficient way thus translating into reliable track-
ing performance. Experimental results demonstrate the power of the
proposed approach.

1. INTRODUCTION

Human motion tracking plays a critical role in human movement
understanding and analysis in that it quantifies the motion for any
following processing. Although the human vision system can locate
another person and his body parts easily, accurately and quickly, the
same task remains arduous for computers. In research, 3-D artic-
ulated human body models are extensively used. Model-based ap-
proaches have the advantage that they can give natural interpretation
and description of human body motion. As a trade-off, one is con-
fronted with the curse of high dimensionality.

The CONDENSATION [5] or particle filter algorithm has be-
come a popular choice for solving visual tracking problems because
of its ability to deal with multi-model distributions. However, it turns
out to be inadequate when the dimensionality of the state space be-
comes large. The reason is largely due to its defective sampling
strategy. In recent years, many different approaches have been at-
tempted to improve the performance of particle filter based human
motion tracker, such as imposing physical constraints [2], training a
dynamical model or building HMM for certain type of human mo-
tion [11] [12], or decomposing the state space by template match-
ing [8]. However, they either lack sufficient influence on the over-
all tracking performance or set too rigid restrictions to be used in
general tracking scenario. It has been realized that improving the
sampling or global optimization strategy is more decisive to the suc-
cess of articulated model based human motion tracking. Preceding
works on this topic include Deutscher et. al.’s annealed particle filter
(APF) [3] and Sminchisescu et.al.’s covariance scaled sampling [4]
and hyperdynamics importance sampling [6]. Our work belongs to
this category.

In this paper we present a new algorithm, which makes sub-
stantial changes to the core structure of the traditional particle fil-
ter. An information exchange scheme is built between the sampling
and the weighting steps to implicitly adjust the estimation of poste-
rior distribution. Moreover, this adjustment also has the purpose of
global optimization, which can save considerable energy within the

filter. The Differential Evolution-Markov Chain (DE-MC), a statisti-
cal method for approximating target density functions, provides nec-
essary assistance in this regard, and is integrated into the framework
of Sequential Monte Carlo Sampling. We name the the proposed al-
gorithm DE-MC particle filter and demonstrate its superiority with
the application in monocular 3D human pose tracking. However, the
generality of the algorithm allows it to be readily used in any visual
tracking context.

2. DE-MC PARTICLE FILTER

The visual tracking problem can be deemed a filtering process p(Xk |
Y1:k), where Xk is the state vector (joint angles in the articulated hu-
man motion tracking case) at time k and Y1:k = {Y1, . . . , Yk} are
the observations (images in the case of visual tracking) up to and
including time k. By Bayesian Inference [5]:

p(Xk | Y1:k) = λkp(Yk | Xk)

�
p(Xk | Xk−1)p(Xk−1 | Y1:k−1)dXk−1

(1)
By applying the Monte Carlo principle, the distribution can be rep-
resented by discrete samples through particle filtering. The N sam-
ples (particles) are drawn from a proposed distribution g(X(k)

i |
X(k−1)

i , Yk) i = 1, 2, . . . , N and each of them will later be as-
signed a weight. Since measurement happens after sampling, in
practice the Yk is an unavailable factor of the proposal distribu-
tion. Generic particle filter tackles the problem by simply ignor-
ing this factor when drawing samples, solely depending on p(X(k)

i |
X(k−1)

i ), i.e. the dynamical model. The dynamical models may
help the samples head for positions relatively near the solution in
regard to their starting points, but then the CONDENSATION or
generic particle filter diffuses them in a blind way and then the suc-
cess of tracking becomes a matter of luck as there are no available
clues. Our motivation to propose the DE-MC particle filter is to uti-
lize the feedback from the measurement function to compensate for
the missing Yk. According to this information particles can move
to the regions where a solution is more possible to be found. Figure
1 illustrates the different results of the two sampling strategies. In
the following subsections we will first introduce some background
knowledge. Then we will propose the DE-MC particle filter.

2.1. Monte Carlo Markov Chain and Differential Evolution Al-
gorithm

Regardless of in which initial state it starts, a Markov chain (MCMC)
will always reach a steady state distribution p(X) if it possesses irre-
ducibility and aperiodicity[]. They guarantee a finite path from each
state to every other state with non-zero transition probability, which
is the so-called ergodicity. Markov Chain Monte Carlo (MCMC)
method takes aim at constructing a MC which has the given target
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Fig. 1. Sampling of CONDENSATION and DE-MC particle filter.
A: Dynamical Model. B: Gaussian Noise Diffusion C: DE-MC.

distribution as its invariant distribution [10]. Normally we ensure
the stationarity by making the chain satisfy the reversibility property
(detailed balance):

p(Xk)T(Xk−1 | Xk) = p(Xk−1)T(Xk | Xk−1) (2)

A very popular MCMC implementation method is the Metropo-
lis algorithm [10]. According to this, the transition probability of the
chain is given by:

T(Xk | Xk−1) = α(Xk−1, Xk)g(Xk | Xk−1) (3)

where g(Xk | Xk−1) = g(|Xk − Xk−1|) is a symmetric random
walker proposal distribution and:

α(Xk−1, Xk) = min(1,
p(Xk)

p(Xk−1)
) (4)

is called the acceptance rate.
The Differential Evolution Algorithm (DE) is an global opti-

mization algorithm for high dimensional state space [13]. Similar
to other evolutionary program methods, it is based on evolution the-
ory and competition mechanism. Compared with the Genetic Algo-
rithm, it is defined in real parameter space and hence is simpler to
use. Experiments have verified its excellent performance in conver-
gence through comparison with other optimization methods [13].

Assume that a function f (E) is defined over a D-dimensional
state space ε. Assume also that we do not know the analytical form
of this function, but can evaluate the value indirectly. We can use the
DE algorithm to search the global maximum with an initial popula-
tion En,0, n = 0, 1, . . . , N − 1. N is the number of population. The
DE algorithm generates a new generation of population in time step
k+1 according to:

E∗
n,k+1 = En,k + λ(Er1,k − Er2,k) (5)

where r1, r2 are random integers drawn from [0,1,2,. . . ,N-1] and
mutually different, and λ > 0. Whether a newly generated state
vector will be accepted is dependent on the value evaluated by the
target function: if E∗

i,n+1 yields a larger function value than Ei,n

the state will be updated, otherwise it will be kept intact. Several
variants of the DE are available and the use of crossover operator is
optional [13].

2.2. DE-MC Algorithm

By examining the characteristics of the MCMC and the DE algo-
rithm we find that they can help each other in search of an optimal
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(b) Sampling result for the Muller
potential surface (200 samples, 30 it-
erations).

Fig. 2. The DEMC algorithm simulation results. Black cross marks
the starting position of samples.

solution. The acceptance rule in the DE part is controlled by the
MCMC acceptance mechanism, whilst the step size and orientation
of the random walk of the MCMC part is produced by the DE al-
gorithm. Multiple MCMCs can interact with each other, sharing in-
formation with the aid of the DE algorithm, and under the guidance
of the DE algorithm, the MCMCs will gradually concentrate on the
important regions of the posterior distribution without being trapped
around one local extrema for a long time. The DE-MC algorithm is
summarized as follows:

Start with a target function f (E) and an initial population (E0,0,
E1,0, . . . , EN−1,0), whose members are D-dimensional vectors.In
the kth iteration:

1. For each member of the population En,k−1 , n = 0, 1, . . . , N−
1, randomly choose two integers r1 and r2 so that r1 �= r2 �=
n.

2. Create a new member E∗
n,k by:

E∗
n,k = En,k−1 + λ(Er1,k−1 − Er2,k−1) + g. (6)

λ is a scalar whose value is found to be optimal when: λ =
2.38/

√
2D and g is drawn from a symmetric distribution with

small variance compared to that of E.

3. Compute the ratio: R =
f(E∗

n,k)

f(En,k−1)
.

4. Choose a number h from U(0,1), if R > h, En,k = E∗
n,k;

otherwise En,k = En,k−1.

5. Repeat steps 2-5 for iteration k + 1 until a convergence or a
preset end point is reached.

It is easy to verify that detailed balance is retained with the DE-
MC algorithm. We run simulations on Muller potential surface to
illustrate the performance of the DE-MC algorithm in approximating
target distributions. In the literature [6], it is shown that under the
same settings the samples are still trapped in the starting cost basin
even after 6000 iterations with the standard dynamic sampling, while
from Figure 2 we can see the important regions of target distribution
are well sampled by 200 samples with the DE-MC algorithm after
only 30 iterations.

2.3. DE-MC Particle Filter

Based on the Differential Evolution-Monte Carlo (DE-MC) algo-
rithm, we propose a novel sequential Monte Carlo sampling ap-
proach, namely the DE-MC particle filter. The DE-MC particle fil-
tering iteration at time step k can be summarized as follows:
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Starting from the set of particles which are the filtering result of
time step k − 1: {X(i)

k−1, w(X(i)
k−1)}N

i=1.

1. Selection: select a set of samples { ˆX(i)
k }N

i=1 from {X(i)
k−1}N

i=1

with the probability proportional to w(X(i)
k−1).

2. Prediction and Measurement: Apply a constant velocity

dynamical model to the samples: X(i)−
k =

ˆX(i)
k + Vk−1,

where Vk−1 is the velocity vector computed in time step k-
1. The particle set {X(i)−

k }N
i=1 then acts as the initial popu-

lation for a T-iteration DE-MC processing. The processing
follows the procedure we listed in the preceding subsection.
The fitness function is the image likelihoods in the case of
visual tracking (see next section). Then the weights of parti-
cles are subject to update by the DE-MC. For Equation (6) in
step 3 of the DE-MC algorithm we choose g ∼ U(−cσ, cσ)

and σ = [σ0, σ1, . . . , σD−1]
T is a vector with the elements

equal to the standard deviations of the elements in X. Normal
distribution can be used here instead of uniform distribution.
c is a small number which can be flexibly chosen. Also in
the same equation, the optimal value of λ is now determined
by λ = (1 − c) × 2.38√

2D
. At the end of this step, we take

the output population as the particle set of current time step:
{X(i)

k , w(X(i)
k )}N

i=1.

3. Representation and Velocity Updating: Estimate the state
at time step k as: Xk = arg max

X(i)
k

;i=1,...,N
w(X(i)

k ) and

update the velocity vector of current time step: Vk = Xk −
Xk−1.

We adopt an adaptive strategy inspired by [3] to help determine
the value of σ in step 2 by:

σk,t ∝ 1�n
i=1(w(X(i)

k,t−1))
2

(7)

where t denotes the DE-MC iteration index. The right hand side of
the equation is called the survival diagnostic. The step size of ran-
dom jumping for current DE-MC iteration is reduced if the survival
rate of the last DE-MC iteration is high and is inflated otherwise.

The most evident improvement of the DE-MC particle filter with
respect to the CONDENSATION algorithm is that the prediction
(sampling) step and the measurement step are now integrated to-
gether instead of functioning separately. As a result, the observation
lost in traditional particle filters is retrieved. The dynamical model is
still necessary to accomplish part of the sampling task, however it is
the DE-MC algorithm that will make the proposed algorithm work
more effectively than its predecessors.

3. IMAGE LIKELIHOOD

The image likelihood or observation model is used to measure the
correctness of particles (hypothesis state vectors). It is built by com-
paring the resemblance of the hypothesis images to the ground-truth
ones. A 3D articulated human body model is adopted for generat-
ing hypothesis images. It has 14 body segments which are modeled
as truncated cones or spheres. The 24 DOFs (Degrees of Freedom)
associated with the model, including joint angles and global transla-
tion and rotation parameters, give a description of the human pose
and form the vector X. Joint angle limits are imposed as constraints
for the reason of physical consistency. After solving necessary para-
meters through initialization and calibration, hypothesis images can
be produced by the perspective projection of the human model.

Fig. 3. Snapshots of the tracking results for walking, hopping, run-
ning and jumping sequences, respectively

We consider three image features for the evaluation of image
likelihoods. Here we only give a very brief description of them.
Details are available in our earlier work [7]. In the following deno-
tations, S, C, and B represent silhouette, color histogram and bound-
ary, respectively; the subscript G and H denote ground-truth and hy-
pothesis, respectively:
Area of silhouette We count the pixels in the overlapped region of
SG and SH and use their ratio as the density p1(Yk | X(i)

k )
Color histogram We compute the Bhattacharyya distance between
CG and CH as p2(Yk | X(i)

k ). Here we propose to use a weighting
scheme for calculation [7].
boundary descriptor We compute the Euclidean distance between
the Fourier Descriptors of BG and BH as p3(Yk | X(i)

k ).
The overall observation model is set as the multiplication of the

three individual density functions.

4. EXPERIMENTS

We carry out experiments on four monocular human motion video
sequences: Most experiments are conducted on Sequence 1, which
is a walking sequence; Sequence 2, 3, 4 are hopping sequence, jump-
ing sequence and running sequence, respectively. Their lengths are
between 1.2s and 2.0s and the size is 720 × 480. Monocular video
sequences offer a huge challenge for any human motion tracking
algorithm. To our knowledge there are very few successful track-
ing results reported under a similar situation in the literature. Many
preceding works ease the tracking task by using multiple cameras
[3], restricting application scenario to a particular motion type [11]
[12] and having the subjects wear clothes which have distinguished
feature for different body parts [4], while our experiments are con-
ducted in a quite general situation. The tracking results are shown in
Figure 3. For tracking Sequence 1, a 7-layer (or iteration) DE-MC
particle filter is used (Here we use “layer” to represent a DE-MC
iteration). The number of particles is 500, which can lead to a satis-
factory balance between the reliability and the computational cost of
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(a) (b)

Fig. 4. Comparison of the tracking results by using the DE-MC par-
ticle filter with that by using other popular human tracking methods.
(a) The images are the results obtained by the CONDENSATION
(the second row), the annealed particle filter (the third row) and the
DE-MC particle filter(the fourth row), respectively. (b) The quanti-
tative analysis in terms of the average sample weights.

the tracker. For Sequence 2, 3 and 4, a 9-layer DE-MC particle fil-
ter with 600 particles is used. Although some tracking errors can be
found due to motion blur, the proposed tracker achieves satisfactory
performance. In Figure 4, we compare the tracking result obtained
by a 7-layer DE-MC particle filter with those obtained by other pop-
ular particle filtering-based algorithms. In terms of fair comparison,
the experiment is based on almost the same number of measurement
function evaluations (DE-MC:3500 times/frame, Condensation and
APF: 5000 times/frame) because it is the most time-consuming part
for particle filtering. The other factors, such as the initialization re-
sult, initial covariance of the state vector and measurement function
are given the same settings for all the algorithms. Despite consum-
ing only 70% of the computations spent by the other two algorithms,
DE-MC particle filter still outperforms them. Here average sample
weights are regarded as a measure of tracker’s performance since
to a large extent it can reflect how many of the samples are consid-
ered ”valid”. We also compare the tracking results for Sequence 1
obtained by using 2-layer, 5-layer and 7-layer DE-MC particle fil-
ters, in Figure 5. The numbers of samples per layer for these three
trackers are 1750, 700, and 500, respectively.

5. CONCLUSIONS

We have developed a novel human motion tracking method, the DE-
MC particle filter, based on the fact that the posterior depends on
both the previous state and the current observation in a visual track-
ing application. This method improves the traditional particle-filter-
based approach by building a path which connects sampling and
measurement. This leads to a more reasonable approximation to
the proposal distribution and hence an greatly improved accuracy
for tracking. Future work will include automatic initialization of
the human body model parameters and the application of more prior
knowledge about human kinematics in tracking.
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