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ABSTRACT
Rotoscopy is a crucial processing for cinema post-production. It cor-

responds to the segmentation of an object of interest in a video in or-

der to apply a local processing. In the industry, rotoscopy is usually

performed manually, frame by frame. Semi-automatic algorithms

have been proposed to reduce the load of this task. However, they

classically use contour-based information and consequently lack ro-

bustness in case of occlusion. Here, we propose a region-based con-

tour tracking algorithm relying on feature points which are tempo-

rally matched to build trajectories used to estimate a global or lo-

cal deformation between a distant reference contour and the current

frame. Then, we propose a rotoscopy algorithm based on a forward

and a backward contour tracking. The use of region information and

distant reference contours allows to avoid drift and greatly reduce

the influence of occlusions. The rotoscopy algorithm was applied to

CIF and SD sequences.

1. INTRODUCTION

Rotoscopy is the term used in post-production for the task of isolat-

ing a video object by defining its contour in each frame of a video.

The purpose is to apply a specific image processing to a particular

object. In cinema post-production, this segmentation is usually per-

formed manually and frame by frame by so-called animators. As a

consequence, it is a long, repetitive and expensive task. This is why

rotoscopy is a very active research topic of video processing.

The rotoscopy problem can be expressed as follows. Given the ob-

ject contour (represented by a 2D closed curve, e.g., polygon, spline,

etc.) in the first and the last frame of the sequence, we want to com-

pute the object contour as precisely as possible in the intermediate

frames.

Semi-automatic rotoscopy is already proposed in some softwares

but they are classically based on linear contour interpolation. If the

global segmentation is not satisfying, the user can refine it by defin-

ing an intermediate keyframe. Unfortunately, linear interpolation is

not precise enough and the segmentation has to be refined too many

times.

Active contours [1, 2] can be used for rotoscopy. Luo and Elefthe-

riadis [3] propose a rotoscopy algorithm where the contour interpo-

lation problem is decomposed into two directional contour trackings

and a merging problem. In this paper, active contours are used for

the tracking part. However, a drift can be observed because of error

propagation from frame to frame. Agarwala et al. [4] present an

algorithm which uses active contours to minimize an energy written

as a linear combination of shape terms and image terms. Because

these methods are too local both spatially and temporally, they are
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Maritimes”, France.

not robust to occlusions.

In this paper, we propose a rotoscopy algorithm based on a for-

ward and a backward contour tracking. This tracking is performed

by applying a global or a local deformation to a reference contour.

The deformation is deduced from the 2D+t trajectories of feature

points. The trajectories, also called tracks, are formed by feature

point matching. This approach is region-based, as opposed to pre-

viously cited methods, because feature points are selected inside the

contour region on not only at the contour vicinity. It allows to man-

age large occlusions.

The paper is organized as follows: Section 2 describes the proposed

contour tracking algorithm. Section 3 describes the proposed ro-

toscopy algorithm. Section 4 shows and analyzes some rotoscopy

examples. Finally, Section 5 concludes and gives some perspectives.

2. CONTOUR TRACKING ALGORITHM

The classical approach for contour tracking consists in computing

a deformation from one frame to the next. The proposed method

is based on the following steps: feature point extraction, occlusion-

robust track building, search for reference frames and estimation of

the reference contour deformation.

2.1. Feature point extraction

The first step of our contour tracking algorithm is the extraction of

feature points on each frame. A “feature point” or “corner” is a

two dimensional feature including for example corners and junc-

tions. The corner extraction problem has been abundantly studied

in image processing research [5, 6].

A feature point is a two dimensional position in a specific image.

However, to distinguish two different feature points, we define for

each feature point a descriptor which describes its neighborhood by a

set of values grouped in a vector or a matrix. Thus, feature points de-

fined on different frames and which correspond to the same corner in

the video have theoretically the same descriptor. However, in prac-

tice, the descriptor may slightly change and the L2 norm between

two descriptors has to be used to distinguish two feature points.

A classical descriptor is a block of luminance values centered on

the feature point and every image information as chrominance val-

ues, gradient norm, gradient direction or multi-spectral values can

be used.

2.2. Building tracks

We have now the possibility to verify if two feature points defined

on two different frames correspond to the same image corner or not.

The extracted feature points and the associated descriptors are used
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to build a set of tracks. A “track” is the 2D+t trajectory of a feature

point. We consider that a track has the following properties:

• a track is a set of feature points defined on at least two differ-

ent frames,

• a track can start after the first keyframe and finish before the

last keyframe,

• the track lifetimes are independent of each other.

We explain below a short example of the construction of a link be-

tween two feature points.

Let Fm be the mth frame of the sequence with m > 1. Let pb
m be

the bth feature point defined in Fm and db
m its associated descrip-

tor. We find now the feature point pa
l defined in a previous frame

Fl which minimizes ‖ db
m − dj

i ‖L2 ∀i < m ∀j. After we find

the feature point pc
n defined in a next frame Fn which minimizes

‖ da
l − dj

i ‖L2 ∀i > l ∀j. If pb
m and pc

n are the same feature point

(i.e. m = n and b = c), the feature points pa
l and pb

m verify cross-

validation (or are corresponding) and the link {pa
l , pb

m} is created.

Otherwise no link is created. Fig. 1 shows an example of failed and

successful cross-validation.
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Fig. 1. Example of cross-validation.

This algorithm is used for all frames and all feature points and

finally we have a set of links. Links are concatenated in order to

build the set of tracks. Fig. 2 shows an example of tracks on ten

frames of the sequence Erik.

Fig. 2. Each curve is the 2D projection of a track to illustrate the

2D+t corner trajectory and the cross represents the actual position of

the feature on the current frame.

2.3. Contour tracking

Let v be a video of n images or frames F1, · · · , Fn. Let c1 be an

initial contour (polygon, spline, B-spline, etc.) hand-edited on frame

F1 which segments an object. A contour tracking algorithm consists

in computing from c1 the contours ci, ∀i∈[2, n].
First we propose a global approach for contour tracking. However,

global approach is not precise enough to represent the real contour

object deformation. Therefore, we propose a local approach more

adapted to our problem.

In both approaches, contour deformation is approximated by a local

or a global matrix M of affine transformation with a variable number

of parameters.

2.3.1. Global approach

Given the initial contour c1, the contours c2, c3, · · · , cn are com-

puted frame by frame. Let us consider that contours c2, ...cf have

already been computed. cf+1 is computed from the tracks and the

previous contours c1, ...cf as follows:

• select all the tracks which exist on at least Ff and Ff+1,

• among these tracks, keep all the tracks which were defined

inside the previous contours ci, ∀i ∈ [1, f ],

• find the reference frame Fr which is the first frame where all

the selected tracks are defined,

• use the track positions on Fr and Ff+1 to estimate the affine

transformation matrix M ,

• compute cf+1 by applying M to all the sample points of ref-

erence contour cr .

In classical approach, contour cf+1 is always computed from cf ,

and cf from cf−1, etc. Each computed contour is indirectly rela-

tive to the initial contour c1. The miscalculations realized to com-

pute cf have repercussions on the computation of cf+1, · · · , cn. To

avoid this drift, we use in the proposed algorithm a reference con-

tour which is not the very previous contour. Therefore, cf is more

directly relative to c1.

However, there is still an issue. This contour tracking algorithm uses

one reference frame and a global transformation matrix for the whole

contour. As the transformation is the same for all the sample points

of the contour, the contour transformation can only be an affine trans-

formation. However, in a real video sequence, object transformation

is generally more complex than a simple affine transformation. In

addition, as object motion is non uniform, the estimation of the con-

tour deformation can be biased as seen on Fig. 3. Therefore, we

propose below a local approach.

2.3.2. Local approach

The main idea is to estimate one transformation matrix M for each

sample point of the contour. For a given sample point, the matrix

is estimated from the lth closest tracks among the selected tracks

used in the global approach. Likewise, we propose to use one local

reference sample point and one local reference frame for each sam-

ple point. Thus, cf+1 is computed from the tracks and the previous

contours c1, ...cf for the local approach as follows:

• select all the tracks which exist on at least Ff and Ff+1,

• among these tracks, keep all the tracks which were defined

inside the previous contours ci, ∀i ∈ [1, f ],

• find the global reference frame Fr which is the first frame

where all the selected tracks are defined,

• for each sample point sj
r of the contour cr ,

– among the selected tracks, select a subset formed by the

lth closest tracks of sj
r ,

– find the local reference frame Fr̃ , with r̃≤r, for sj
f

which is the first frame where all the tracks of the sub-

set are defined,

– use the subset track positions on Fr̃ and Ff+1 to esti-

mate the local affine transformation matrix M ,

– compute sj
f+1 by applying M to sj

r̃ .
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2.3.3. Robustness to occlusions

The proposed algorithm is robust to occlusions because the track

building can “jump” frames where there is occlusion.

3. ROTOSCOPY

Rotoscopy is a method to define a 2D+t segmentation for a chosen

object. We propose in this section an algorithm of rotoscopy based

on the previous contour tracking algorithm. First, we expose the

proposed method with two keyframes. Second, we explain how user

can refine the whole segmentation by adding new keyframes.

3.1. Two keyframes

The rotoscopy problem is the following. Let v be a video of n im-

ages. Let c1 be the initial contour hand-edited on frame F1 which

segments an object and cn be the final contour on frame Fn which

segments the same object. Rotoscopy consists in computing the con-

tours ci ∀i∈[2, n − 1] from c1 and cn.

Basically, we divide the rotoscopy problem in a two directional con-

tour tracking problem and a merging problem. Contour tracking al-

gorithm can be applied in forward direction as seen before, but it

can also be applied in backward direction because tracks are inde-

pendent from temporal direction. The proposed rotoscopy algorithm

is the following:

• compute the forward segmentation cf
i ∀i∈[2, n] by using con-

tour tracking from initial contour cf
1 = c1 in forward direc-

tion,

• compute the backward segmentation cb
i ∀i∈[1, n−1] by using

contour tracking from final contour cb
n = cn in backward

direction,

• merge forward and backward segmentations by computing a

weighted average segmentation Ci as follows:

Ci =
n − i

n − 1
.cf

i +
i − 1

n − 1
.cb

i , ∀i ∈ [1, n]

Forward and backward segmentations are linearly weighted to verify

the properties C1 = c1 and Cn = cn.

3.2. Refinement by adding keyframes

If the computed segmentation is not satisfying, a refinement method

consists in the user interaction on the computed segmentation. The

user chooses a frame Fm (called interframe) among F2, · · · , Fn−1,

where the computed contour is too far from the real object contour,

and modifies it by pulling some sample points. Fm becomes a new

keyframe and to compute the segmentation, rotoscopy is computed

as before separately on intervals [1, m] and [m, n]. Refinement can

be used iteratively.

4. EXPERIMENTS

We first expose and analyze the differences and the influences of the

two proposed contour tracking algorithms: the global and the local

approach. Fig. 3 shows the difference between both approaches. The

segmentation is more accurate with the local approach. Indeed, the

parameter estimation is biased for the global approach by the non

uniform motion of the tracks in the object.

In addition, contours are more directly relative to the initial contour.

For example, on the sequence Bus seen on Fig. 6, the mean dis-

tance between current frame and reference frame is 5.3 frames for

the global approach and 9.5 for the local one.

(a) Global approach (b) Local approach

Fig. 3. Comparison of the global and the local approach for contour

tracking algorithm.

The proposed rotoscopy algorithm is tested on three sequences

which have different features, one CIF (352x288 pixels) and two SD

sequences (720x480 pixels). Fig. 4 shows the sequence Erik where

the face is segmented with a good accuracy in spite of deformation

and motion of Erik’s face. On the sequence Skate (Fig. 5), the con-

tours of all frames are drawn. The object is well tracked in spite

of the translation and the scaling of the object. The main result is

about occlusion management which is a very difficult problem for

object segmentation. Fig. 6 shows a sequence where a bus is largely

occluded by a billboard. In spite of this occlusion and the contour

deformation, the bus is precisely tracked. Finally, these figure shows

that contour may be indifferently a polygon or a spline.

Fig. 4. Rotoscopy results on sequence Erik (CIF).

5. CONCLUSION AND PERSPECTIVES

We have proposed in this paper a contour tracking algorithm based

on feature point tracking. The main particularity of this algorithm

is that the object tracking is region-based instead of contour-based.

Tracks are the key element of the system and local affine transforma-

tion increases the precision of the segmentation. This method is used
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Fig. 5. Rotoscopy results on sequence Skate (SD).

to derive a rotoscopy algorithm by performing a tracking in forward

and backward temporal direction.

According to the experimentation, this algorithm seems accurate and

robust with occlusions. In addition, the proposed rotoscopy algo-

rithm can be applied to high definition sequences (HD) in regard to

the low computation times in standard definition sequences (SD).

As perspectives, we plan to test alternative robust parameter estima-

tion algorithms [7, 8, 9].
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Fig. 6. Rotoscopy results on sequence Bus (SD).
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