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ABSTRACT

Lack of temporal coherence in video segmentation algorithms of-

ten leads to flickering or to discrepancies on the segmentation mask

boundaries. Active contour video segmentation algorithms can lead

to very smooth segmentation masks when they are defined in three

dimensions (two spatial and one temporal).

In this paper, we will use an active contour method to attract an

active surface toward a non-smoothed segmentation mask boundary.

This active surface will produce a new segmentation mask which

will be smoother than the first one. To achieve this task, we intro-

duce a new region-based term for active contour segmentation in the

variational framework. This term attracts the evolving curve to a ref-

erence contour. The energy criterion and the evolution equation are

defined in n-dimension and we investigate the particular case of two

regions.

The use of active surfaces to smooth video segmentation masks

appears to be a very powerful tool for video postprocessing. The

resulting masks are smoother than the original ones, the discrepan-

cies of the segmentation masks are removed and the flickering on the

boundary of the segmentation masks are considerably reduced.

1. INTRODUCTION

Active contours are powerful tools for image and video segmentation

or tracking. They can be formulated in the framework of variational

methods. The basic principle is to derive a Partial Differential Equa-

tion (PDE) from the minimization of an energy criterion. By solving

the PDE, the contour is iteratively deformed until it converges to-

wards a (local) minimum of the criterion hopefully corresponding

to boundaries of the objects to be segmented. The curve, noted Γ,

evolves in its normal direction, under a velocity field deduced from

the minimization of an energy criterion. Originally, snakes [1] or

geodesic active contours [2] are driven towards the boundaries of the

objects through the minimization of a boundary integral:

J(Γ) =

Z
Γ

kΓ(s)ds, (1)

where kΓ(s) is generally a function of the gradient of the image.
Active contours driven by the minimization of region functionals in
addition to boundary functionals have been developed in [3, 4, 5].
In region-based active contours, the domain is divided in different

regions. Let us examine the case of two regions Ωin and Ωout. The
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energy J of such an active contour can be written as:

J(Ωin, Ωout) =

Z
Ωin

kin(x)dx +

Z
Ωout

kout(x)dx +

Z
Γ

kΓ(x)dx.

(2)

The functionals kin and kout, called descriptors, characterize the re-

gions. The descriptors may depend on the region features, ki(Ωi,x),

e.g. by considering different region statistics like the mean intensity

or the variance [6].

In this paper, we study the attraction of an active contour to a

reference contour. This is equivalent to consider the reference con-

tour as being a shape prior for the active contour. The use of shape

prior in active contour has been studied by several researchers. First

approaches were statistical models of shape variation [7, 8, 9, 10].

More recently, variational model have been proposed [11, 12, 13,

14].

Gastaud et al. [13] proposed an interesting variational approach

based on an active contour technique including a shape prior. The

criterion is based on the distance between the active contour and the

reference contour. The derivation of the contour evolution criterion

introduced in [13] assumes that the evolving curve does not cross

the skeleton of the reference contour. This assumption is not often

satisfied when dealing with multiple regions to segment or when the

reference curve is not smooth enough. With a boundary-based ap-

proach, when a point of the evolution curve is on the skeleton of the

reference contour, it has theoretically two or more than two possibil-

ities of evolution directions because there exists more than one clos-

est reference point. Nevertheless, in practice, the implementation

and the neighboring points drive the evolution in the good direction

[15]. With a region-based criterion, the assumption of not crossing

the skeleton could be discarded.

For these reasons, we propose a region-based criterion for active

contour segmentation. Our region-based term is defined in n-dimension

for a domain separated in K different regions. Foulonneau et al. [14]

also presented a region-based criterion to attract an active contour to

a shape prior. The difference with our method is that their criterion

is defined in 2D as a distance between shape descriptors based on

the Legendre moments of the characteristic function. They can deal

with affine deformation of the shape prior but extension of their ap-

proach to 3D and K regions would be difficult.

We apply the proposed method to video segmentation mask smooth-

ing. A video segmentation mask, obtained by a fast watershed al-

gorithm [16], is used as a tri-dimensional shape prior (or reference

surface). An active surface is then attracted to this reference using
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the proposed active contour criterion, resulting in a both temporally

and spatially smoothed segmentation mask.

The general contour evolution criterion to be minimized in n-D with

K regions is introduced in Section 2. This criterion is then mini-

mized and an evolution equation is introduced for the particular case

of two regions in n-D in Section 3. Finally, we show in Section 4

that our new criterion is well suited for video segmentation mask

smoothing applications and quantitative evaluation is performed in

Section 5.

2. A GENERAL FRAMEWORK

Consider a reference partition Ωref
1 , . . . , Ωref

K of a domain X ⊂
R

n. Let Γref be the reference boundary delimiting the K different

regions Ωref
1 , . . . , Ωref

K . Note that :

K[
i=1

∂Ωref
i = Γref , (3)

where ∂Ωref
i is the boundary of the region Ωref

i . For each region

Ωref
i , we define a distance map which indicates the distance of each

point of coordinates x of the domain X ⊂ R
n to the boundary region

∂Ωref
i . Let ϕ(di(x, ∂Ωref

i )) be the distance map of region Ωref
i .

ϕ : R → R, is a differentiable, odd, and increasing function of

the geometric signed distance di. In our applications we will use

ϕ(d) = d. The function di(x, ∂Ωref
i ) is the distance between x and

the reference boundary ∂Ωref
i . We use the following convention:

di(x, ∂Ωref
i ) =

8><
>:

min
y∈∂Ω

ref
i

|x − y| if x is outside Ωref
i

−min
y∈∂Ω

ref
i

|x − y| if x is inside Ωref
i

0 if x ∈ ∂Ωref
i

This definition implies:

∀x ∈ Ωref
i : ϕ(di(x, ∂Ωref

i )) = min
1≤j≤K

ϕ(dj(x, ∂Ωref
j )). (4)

From those definitions, it is possible to prove that:

Theorem 1 A partition Ω1, . . . , ΩK of the domain X ⊂ R
n mini-

mizes the following energy criterion:

JK(Ω1, . . . , ΩK) =

KX
i=1

Z
Ωi

ϕ(di(x, ∂Ωref
i ))dx, (5)

if and only if Ωi = Ωref
i , ∀i ∈ [1, . . . , K].

The proof of the theorem is given in Appendix A. The theorem

implies that in order to find ∂Ωi, one has to minimize JK . In the

next section, we introduce how this criterion JK can be minimized

in the special case of two regions.

3. A TWO REGION CRITERION

Assume that we have two regions, Ωin and Ωout, in the domain

X ⊂ R
n. Those regions have a common boundary, Γ (see Fig. 1)

. Note that a region can be a set of different unconnected objects.

Let also assume that we have a reference boundary, Γref , making

the separation between two reference regions Ωref
in and Ωref

out . We

compute the two distance maps din(x, Γref ) and dout(x, Γref ) ac-

cording to Equation (4) (see Fig. 2 in the one-dimensional case).

Fig. 1. The initial partition of the image in two regions, Ωref
in and

Ωref
out , and the evolving curve Γ delimiting the current regions Ωin

and Ωout.

Fig. 2. Distance functions din and dout associated to the reference

regions Ωref
in and Ωref

out in the one dimension case. The distances are

negative within their corresponding region and positive outside.

In the particular case of two regions, Ωref
in = X\Ωref

out and, conse-

quently, din(x, Γref ) = −dout(x, Γref ).

Using (5), the proposed region-based criterion, Js, that attracts the

boundary Γ to the shape prior Γref , becomes:

Js(Ωin, Ωout, Γ) =

Z
Ωin

ϕ(din(x, Γref ))dx

+

Z
Ωout

ϕ(dout(x, Γref ))dx

+

Z
Γ

λd−→s , (6)

where x ∈ R
n and λ is a smoothing constant parameter. The addi-

tion of the smoothing term will allow to smooth to obtain a smooth

final contour. We perform the derivation of this criterion following

an Eulerian framework as in [6].

Equation (6) requires the computation of the two distance maps din

and dout.

However, since din(x, Γref ) = −dout(x, Γref ), and using the def-

inition of ϕ, the resulting evolution equation can be writen as:

∂Γs(τ)

∂τ
=

h
2ϕ(din(x, Γref )) + λκm

i
N, (7)

where κm expresses the mean curvature of the surface.

4. APPLICATION: SMOOTHING

4.1. Implementation

Our implementation of Equation (7) uses a level set framework [17].

The reference contour is obtained by performing a watershed seg-

mentation using the algorithm introduced in [18]. These segmen-

tation masks returned by the watershed algorithm appear to be not
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Fig. 3. 3D-smoothing: an active surface is attracted by the segmen-

tation mask obtained by a first segmentation algorithm.

(a) Reference contour on frame 1 (b) Final contour on frame 1

(c) Reference contour on frame 2 (d) Final contour on frame 2

Fig. 4. (Left) Reference contour, (Right) 3D-smoothed contour

very smooth, both spatially and temporally (see Fig. 3). From those

binary masks, we built a 3D distance map using the fast algorithm

introduced in [19]. This map defines the distance of each point of the

video sequence to the closer point of the reference contour which is

not necessary in the same frame. This 3D-distance map is given as

input to the level set algorithm. To speed up the convergence of the

algorithm, we initialize the level set function on the reference sur-

face (Γ(0) = Γref ). Then, the evolving surface converges in less

than 100 iterations to a new surface which is smoother than the orig-

inal but keeping the same shape.

4.2. Results

Fig. 4 shows the result on the first frames of the sequence Erik. We

observe that the final contour is smoother than the reference contour

obtained by the first segmentation algorithm. Thanks to the use of a

3D active surface, the segmentation mask is smoothed in the spatial

axis but also in the temporal axis.

Fig. 5 also shows that the final contour is smoother than the ref-

erence contour. By looking at the reference contours, one can see

that the contour are not smooth and not regular along the temporal

axis. For instance, we notice two large discrepancies. The first one

is on frame 2, close to the shoulder and the head of the daughter.

(a) frame 2 (b) frame 3 (c) frame 2 (d) frame 3

Fig. 5. Zoom on 3D-smoothing. (a) (b) are the initial contour, (c)

(d) are the final contour. The temporal discrepancies are removed by

the rigidity of the 3D-active surface.

The second one is on frame 3, close to the ear of the daughter. As

those discrepancies appear only on one frame, the 3D-level set re-

moves them thanks to the temporal rigidity. The final contour is then

smoother in a spatial point of view but also in a temporal point of

view.

5. VALIDATION

In this section we quantitatively evaluate the improvement of 3D

smoothing of video segmentation masks. For doing this we use the

spatial perceptual information (SI) to compare a smooth segmen-

tation mask to a reference segmentation mask on a spatial point of

view, and the temporal perceptual information (TI) to have a compar-

ison on a temporal point of view. Both metrics were recommended

in a ITU-T Recommendation and may be found in [20]. For our ex-

periments, we created two synthetic video sequences of 100 frames.

The first one is a non moving black square over a white background

and the other one is a square randomly moving over the sequence.

The sequences are corrupted with zero-mean gaussian noises, non

correlated over time, with standard deviation of 0.1, 0.2, 0.4 and

0.6. We then apply a watershed segmentation on each frame of the

sequences. Then, we smoothed the watershed masks with 2D level-

sets and with 3D level-sets. Fig. 6 plots average SI and TI values

versus noise standard deviation. We can see that when noise in-

creases, segmentation performance decreases. From a spatial point

of view (SI), the 3D smoothing does not bring much more perfor-

mances than 2D smoothing. But on a temporal point of view (TI) the

improvement brought by the 3D smoothing is obvious. The flicker-

ing is reduced substantially. Note that in case of no noise, the 2D

smoothing smooth the angles of the square. The segmentation re-

sults are then worse with a smoothing than with a simple watershed

segmentation (Fig. 6 (a),(b)). However, we do not observe this effect

with 3D smoothing. This is because, with 3D smoothing, a point of

the evolving surface is influenced by the points in the other frames.

Therefore, the curvature should be higher than with a 2D smoothing

in order to smooth the angles of the square.

6. CONCLUSION

This paper has proposed a new region-based term for active contour

segmentation in the variational framework. This term attracts the

evolving curve to a reference contour. An application of such a cri-

terion illustrated here is the smoothing of segmentation masks.

On the basis of a reference contour, we first compute a signed dis-

tance map per region. In the case of two regions, one signed distance

map is sufficient. The active contour evolves through this distance
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Fig. 6. Spatial perceptual information (SI) and temporal perceptual

information (TI).

map, being attracted by the reference contour and constrained by

the smoothness term. The main advantage of this smoothing is the

spatial and the temporal coherence. This prevents time artifacts and

considerably reduces the flickering. Moreover, thanks to the 3D, a

point of the boundary is influenced by the previous and the following

frames.

A. PROOF OF THEOREM 1

For any partition Ω1, . . . , ΩK of the domain X ⊂ R
n we have :

KX
i=1

Z
Ωi

ϕ(di(x, ∂Ωref
i ))dx ≥

KX
i=1

Z
Ωi

min
1≤j≤K

“
ϕ(dj(x, ∂Ωref

j ))
”

dx

(8)

On the one hand, if Ωi = Ωref
i , ∀i ∈ [1, . . . , K], then Equation (8)

becomes an equality according to Equation (4).

On the other hand, Equation (8) is minimized when we have the

equality. In that case,

ϕ(di(x, ∂Ωref
i )) = min

1≤j≤K

“
ϕ(dj(x, ∂Ωref

j ))
”

, (9)

This occurs when x ∈ Ωref
i . Ωi is therefore at least a subset of

Ωref
i . As the definition of a partition implies

SK
i=1 Ωref

i = X andSK
i=1 Ωi = X , and as Ωi ⊆ Ωref

i , ∀i ∈ [1, . . . , K], then, the

partitions must satisfy Ωi = Ωref
i .
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