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ABSTRACT 

Recently, Direct Linear Discriminant Analysis (D-LDA) and 

Gram-Schmidt LDA methods have been proposed for face 

recognition. By also utilizing some of the null-space of the 

within-class scatter matrix, they exhibit better performance 

compared to Fisherfaces and Eigenfaces. However, these 

linear subspace methods may not discriminate faces well 

due to large nonlinear distortions in the face images. 

Redundant class dependence feature analysis (CFA) method 

exhibits superior performance compared to other methods 

by representing nonlinear features well. We show that with 

a proper choice of kernel parameters used with the proposed 

Kernel Correlation Filters within the CFA framework, the 

overall face recognition performance is significantly 

improved. We present results of this proposed approach on 

a large scale database from the Face Recognition Grand 

Challenge (FRGC) which contains over 36,000 images. 

1. INTRODUCTION 

Machine recognition of human faces from still-images and 

video frames is an active research area due to the increasing 

demand for authentication in commercial and law 

enforcement applications. Despite the research advancement 

over the years, face recognition is still a highly challenging 

task in practice due to large nonlinear distortions caused by 

natural facial appearance distortions such as expressions, 

pose and ambient illumination variations. Two well-known 

popular algorithms for face recognition are Eigenfaces [1] 

and Fisherfaces [2]. The Eigenfaces method generates 

features that capture the holistic nature of faces through the 

Principal Component Analysis (PCA), which determines a 

lower-dimensional subspace that offers the minimum mean 

squared error approximation to the original high-

dimensional face data. Instead of seeking a subspace that is 

efficient for representation, the Linear Discriminant 

Analysis (LDA) method seeks projection directions that are 

more optimal for discrimination. In practice, Fisherfaces 

first performs PCA to overcome the singularities in the 

within-class scatter matrix (Sw) by reducing the 

dimensionality of the data and then applies traditional LDA 

in this lower-dimensional subspace. 

Recently [3], it has been suggested that the null space of the 

Sw matrix is important for discrimination. The claim is that 

applying PCA in Fisherfaces may discard discriminative 

information since the null space of Sw contains the most 

discriminative information. Fueled by this insight, Direct 

LDA (DLDA) [3] and Gram-Schmidt LDA (GSLDA) [4] 

methods have been proposed by utilizing part of the null-

space of the Sw. However, these linear subspace methods 

may not discriminate faces well due to large nonlinear 

distortions in the faces. In such cases, the proposed kernel 

correlation filter approach may be attractive because of its 

ability to tolerate some level of distortions [5]. One of the 

recent advances in advanced correlation filters is redundant 

class dependence feature analysis (CFA) [6] which proposes 

a novel feature extraction method using advanced 

correlation filter methods to provide superior performance. 

We will show that with a proper choice of nonlinear kernel 

parameters with our proposed kernel correlation filter, the 

performance can be significantly improved over previous 

work. Our experimental evaluation includes results from 

CFA, GSLDA, Fisherfaces, Kernel LDA (KDA), 

Eigenfaces and Kernel PCA on a large scale database from 

the face recognition grand challenge (FRGC) dataset 

collected by the University of Notre Dame [12].  

2. BACKGROUND 

The PCA finds the minimum mean squared error linear 

transformation that maps from the original N -dimensional 

data space into an M-dimensional feature space (where M
<< N) to achieve dimensionality reduction by using the 

eigenvectors corresponding to the largest eigenvalues. 

These resulting basis vectors are obtained by finding the 

optimal W vectors that maximizes the total variance of the 

projected data        

(1)                     

where ST denotes the total scatter matrix. Figure 1 shows 

examples of Eigenfaces generated from the generic training 

images of FRGC data. 
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Figure 1: Eigenfaces from the FRGC data sorted by the largest 

eigenvalues; 1st and 2nd row images show first 14 eigenvectors, 3rd

row images show 201 ~ 207 eigenvectors and 4th row images show 

501~507 eigenvectors in descending order. 

LDA is another commonly used method which seeks to find 

a set of discriminant projection vectors that maximize the 

ratio of the between-class scatter and the within-class scatter 

in the projected space. The optimal basis vectors can be 

denoted as 

                                                                                           (2) 

where BS and WS indicate the between-class scatter matrix 

and the within-class scatter matrix, respectively. The 

solution can be obtained by solving the following 

generalized eigenvalue problem,   

 (3)                                                                                             

 If Sw is invertible, the above generalized eigenvalue 

problem simplifies to the following regular eigenvalue 

problem.  

                                                                                         (4)              

Due to the fact that the number of training images is usually 

significantly smaller than the number of pixels, the within-

class scatter matrix Sw is singular causing problems for LDA. 

Fisherfaces overcomes this singularity problem of LDA by 

first performing PCA to reduce the dimensionality (to 

overcome this singular-matrix issue) and then applies LDA 

in this lower-dimensional subspace. The projection vectors 

from Fisherfaces can be found by optimizing the following 

figure of merit  

       

                        

                                                                                        (5) 

where c is defined as the total number of classes.    

On the other hand, the Direct LDA (DLDA) derives 

eigenvectors after simultaneous diagonalization [8]. Unlike 

previous approaches, the DDLA simultaneously 

diagonalizes BS first and then diagonalizes WS  which can be 

expressed as follows. 

                                                                                        (6) 

The eigenvectors with very small (close to zero) eigenvalues 

in the BS can be discarded since they contain no 

discriminative power, while simultaneously keeping the 

eigenvectors with small eigenvalues in the WS , especially 

the null-space. Another method is the GSLDA approach 

which avoids computing the inverse of the within-class 

scatter matrix or performing the diagonalization needed in 

LDA. The GSLDA approach calculates the orthogonal basis 

vectors in    

                       (7) 

where ST (0).and Sw (0) indicate the corresponding null spaces 

of each scatter matrix  and  
________

)0(TS indicates the orthogonal 

complement spaces of ST (0). The GSLDA method has been 

reported to offer better performance over Fisherfaces and 

other LDA methods [4], which in turn outperform PCA 

based methods [2]. Figure 2 shows examples of the LDA 

basis vectors generated from the generic training images of 

the FRGC data.  

Figure 2: The LDA basis vectors; 1st row images are examples of 

the Fisherfaces, and 2nd row images are examples of the GSLDA 

eigenvectors.

Correlation filter approach represents the data in the 

frequency domain using derived closed form solution to 

specific optimization criteria. One of the most popular 

correlation filters is the minimum average correlation 

energy (MACE) [7] filter. This is designed to minimize the 

average correlation plane energy resulting from the training 

images, while constraining the correlation peak value at the 

origin to pre-specified values. Correlation outputs from 

MACE filters typically exhibit sharp peaks, making the 

peak detection and location relatively easy and robust. The 

closed form expression for the vectorized MACE filter h is

                        uDDh
-1-1 1)(                            (8)  

where X is a d2xN complex valued matrix (where N is the 

number of training images and d2 is the number of pixels in 

each image) and its ith column contains the 

lexicographically re-ordered version of the 2-D Fourier 

transform of the ith training image. D is a d2xd2 diagonal 

matrix containing the average power spectrum of the 

training images along its diagonal and u is a column vector 

containing N pre-specified correlation values at the origin. 

Optimally trading off between noise tolerance and peak 

sharpness produces the optimal trade-off filters (OTF).  

OTF filter vector is given by  

                             
1 1( )1

h T X X T X u                         (9) 
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where 21T D C , 0  1 , and C is a d2xd2

diagonal matrix whose diagonal elements C(k,k) represent 

the noise power spectral density at frequency k. Correlation 

filters are well suited for biometric verification application 

and have been shown to exhibit robustness to illumination 

variations and other distortions [5].  

The LDA based methods offer the potential to outperform 

Eigenfaces. However, LDA based vectors may not have 

generalization power to the unseen classes. This problem 

also occurs when we apply the correlation filters since the 

typical design of correlation filters is based on only using 

the gallery images. The class-dependence feature analysis 

(CFA) is proposed to generalize the correlation filters and 

allow the use of the generic dataset to produce a novel 

feature extraction method as explained in the next section.   

3. CLASS-DEPENDENCE FEATURE ANALYSIS 

(CFA)

In CFA approach, one filter (e.g., MACE filter) is designed 

for each class in the generic training set. Then a test image y 

is characterized by the inner products of that test image with 

the n MACE filters, i.e., 

             (10)                                                                              

where hmace-n is a filter is trained to give a small correlation 

output (close to 0) for all classes except for class-n as 

shown in Figure 3. For example, the number of filters 

generated by the FRGC generic training set is 222 since it 

contains 222 classes (or subjects). Then each input image y 

is projected onto those basis vectors to yield a 222 

dimensional feature vector x. The similarity of the probe 

image to the gallery image is done in this 222 dimensional 

feature space. 

Figure 3: The CFA algorithm; the filter response of y1 and hmace-2 

can be distinctive to that of y2 and hmace-2 

Due to the nonlinear distortions in human faces, the linear 

subspace methods have not performed well in real face 

recognition applications. As a result, the PCA and LDA 

algorithms are extended to represent nonlinear features 

efficiently by mapping onto a higher dimensional space. 

Since nonlinear mappings increase the dimensionality 

rapidly, kernel trick methods are used for computational 

efficiency as they enable us to obtain the necessary inner 

products in the higher-dimensional feature space without 

computing the higher-dimensional feature mapping. 

Examples are Kernel Eigenfaces ,Kernel Fisherfaces [13] 

and Support Vector Machines (SVM)[9][10][11]. The 

mapping function can be denoted as follows. 

                                                                                         (11) 

Kernel functions defined by )(),(),( yxyxK  can be 

used without having to form the mapping as long as kernels 

form an inner product and satisfy Mercer’ theorem. 

Examples of kernel functions are: Polynomial kernel 

( pbabaK )1,(),( ), Radial Basis Function kernel 

( )2/)(exp(),( 22babaK ), and Neural Net Kernel 

( ),tanh(),( bakbaK are known. 

4. KERNEL CORRELATION FILTERS 

The Kernel Correlation Filters can be extended from the 

linear advanced correlation filters using the kernel trick.  

The correlation output of a filter h and an input y can be 

expressed as                               

                     

(12) 

                                                                                              

where XDX 0.5'  indicates pre-whitened version of X .

From now on, we assume the X  is already pre-whitened. 

Now we can apply the kernel trick to yield the Kernel 

Correlation Filter:  

                                                                                     (13)        

                                                                                         

We can use these filters on the same CFA framework to 

obtain the same 222 dimensional feature vector 

representation which we refer to as the Kernel CFA (KCFA) 

method. Figure 4 shows the comparative experimental results 

using Eigenfces (PCA), GSLDA, CFA, and KCFA of the 

experiment 4 of the FRGC. The performance of Eigenfaces is the 

benchmark provided by NIST [12].

Figure 4: The performance comparison of the FRGC experiment 

4 at 0.1 % FAR. The Kernel CFA shows the best results over all 

linear methods. 

The similarity or distance measure between gallery image 

and probe image is important. Commonly used distance 

measures are L1-norm, L2-norm, Mahalanobis distance [6] 

and normalized cosine distance (given below) which 

exhibits the best results on the CFA and KCFA.  

                            (14)                      

where d denotes the similarity (or distance) between x and y.

The PCA and GSLDA use the L2-norm while the CFA and 

KCFA use the distance in eq. 14, and the resulting 

performance is shown in Figure 4.  
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4. DISTANCE MEASURE IN SVM SPACE 

A direct use of the SVM as a classifier may produce worse 

performance under those distortions since only small 

number of training images are allowed to build the SVM. 

Also due to the large dimensionality of the data, we want to 

apply SVMs in a reduced dimensional feature space.  

Instead of using the SVM as a classifier directly, we use the 

projection coefficients in the SVM space. Figure 5 shows an 

example of the decision boundary and distance measure in 

the SVM space.  

Figure 5: The decision boundary of a class and distance measure 

in the SVM space; a direct use of the SVM may falsely indicate 

that image C5 as not the same person with those images inside 

the decision boundary. 

The L2-norm distance without the SVM decision boundary 

w may be large between the same classes causing poor 

performance. In this case, the L2-norm distance of C2 and 

C5 is greater than that of C6 and C5 causing a 

misclassification. However, if we project C5 on to w, the 

projection coefficients among the same classes will be small 

and we can change the threshold distance depending on 

FAR and FRR. Thus this approach may lead to flexibility of 

varying thresholds and better performance in classification. 

We design 466 SVMs (in a one-against all framework) 

using the gallery set of the FRGC data. The probe images 

are then projected on the class-specific SVMs which will 

provide a similarity score.  As shown in Figure 6, the new 

distance measure in the SVM space produces better results 

than using normalized cosine distance. We also compared 

the different kernel approaches such as KPCA and KDA 

with different distance measure showing the SVM based 

KCFA methods have superior to other kernel approaches as 

shown in Figure 7. 

Figure 6: VR vs FAR for FRGC experiment 4 using KCFA with 

different distance measure. 

Figure 7: VR vs FAR for FRGC experiment 4 for different 

methods using normalized cosine distances and SVM space. 

5. CONCLUSIONS 

Due to nonlinear distortions and poor quality face images, 

linear approaches such as PCA, LDA, and CFA may not be 

suitable to represent or discriminate facial features 

efficiently. By using the kernel trick, the proposed Kernel 

Correlation Filter within the CFA framework exhibits better 

performance over all linear and other kernel approaches. We 

show that by further incorporating the SVM in this reduced 

dimensional feature space, an additional significant 

performance gain is achieved. 
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