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Abstract 

Human gait is an effective biometric source for human 
identification and visual surveillance; therefore human 
gait recognition becomes to be a hot topic in recent 
research. However, the elapsed time problem, which is in 
its infancy, still receives poor performance. In this paper, 
we introduce a novel discriminant analysis method to 
improve the performance. The new model inherits the 
merits from the tensor rank one analysis, which handles 
the small samples size problem naturally, and the linear 
discriminant analysis, which is optimal for classification. 
Although 2DLDA and DATR also benefit from these two 
methods, they cannot converge during the training 
procedure. This means they can be hardly utilized for 
practical applications. Based on a lot of experiments on 
elapsed time problem in human gait recognition, the new 
method is demonstrated to significantly outperform the 
existing appearance-based methods, such as the principle 
component analysis, the linear discriminant analysis, and 
the tensor rank one analysis. 

1. Introduction 

In visual information processing research, such as the 
biometrics [3][4], objects are always represented by 2nd-
order or 3rd-order tensors, such as the human face [3] and 
the human gait [4][9]. However the current pattern 
classification methods, for example, the linear 
discriminant analysis (LDA) [5], cannot work well 
because the number of the training samples is much less 
than the dimensionality of the features, i.e. LDA 
encounters the under sample or small sample size (SSS) 
problem [5]. Moreover, LDA can only accept vectors as 
inputs and objects in face and gait recognition are always 
2nd-order or 3rd-order tensors. Brutal vectorizing the 2nd-
order or 3rd-order tensors into vectors loses the position 
information of the original datum [1][2]. So, to introduce 
the tensor representation for LDA and other pattern 
classification methods [10] is a suitable solution. 
Although Ye et al. [1] proposed the Two-Dimensional 
Linear Discriminant Analysis (2DLDA), which is a 

special case of the Discriminant Analysis with Tensor 
Representation (DATR) [2] developed by Yan et al., both 
2DLDA and DATR cannot converge during training. It is 
a vital problem for machine learning algorithms. 

In this paper, we introduce a new approach for 
discriminant learning using tensor representations. We 
name it the tenor rank-one discriminant analysis 
(TR1DA). Its differences from the existing methods are 
given below: 

 Unlike 2DLDA and DATR, which use one rank n
tensor to describe an object, we use a series of rank-one 
tensors to represent an object. In fact, the rank n method 
is a special case of using a series of rank-one tensors, 
whose benefits were demonstrated by Shashua and Levin 
[6] in image coding and face recognition; 

 Unlike 2DLDA and DATR, we do not directly use 
the Fisher discriminant criterion (FDC), but its 
modification style, the differential scatter discriminant 
criterion (DSDC) [7][8]. DSDC is an approximately 
convex function proved by a large number of experiments 
[7]. In this paper, we prove that DSDC is mathematically 
equivalent to the Fisher discriminant criterion (FDC) with 
a special requirement; 

As an application of our novel learning machine, we 
apply the proposed TR1DA to the elapsed time problem 
[8] in human gait recognition. From the experimental 
results, TR1DA can outperform principle component 
analysis (PCA) [5] and LDA [5] significantly. 

The notation for the learning problems considered in 
this paper is given as follows. The bold uppercase 
symbols represent tensor objects, such as , ,X Y Z ; normal 
uppercase symbols represent matrices, such as , ,X Y Z ;
italic lowercase symbols represent vectors, such as , ,x y z ;
normal lowercase symbols represent scale numbers, such 
as x,y,z ; , , ,i j k l  represent the index numbers in a vector, 
matrix, or tensor; ,M N  represent dimensions of a space; 
and ,m n  represent the sizes of a set. 

The organization of the rest paper is as follows: In 
Section 2, we very briefly introduce PCA, LDA and 
TR1A. In Section 3, DSDC, TR1DA, and the 
convergence checking criterion are given. The 
experimental results are listed in Section 4 and Section 5 
draws the conclusion. 
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2. Related Work 

2.1. Principle Component Analysis (PCA)

Given a set of n  objects, ix , 1 i n , N
ix R , PCA 

[5] diagonalizes the covariance matrix C  according to: 
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where 
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n
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m x n  is the mean vector. The 

eigenspace U  of C  is spanned by the first K
eigenvectors with the largest eigenvalues, 

1, , KU v v . For an object x , it is transformed by, 
Ty U x m .                                    (2) 

For recognition, the prototype px  and the test object 

tx  are projected onto U  to get py and ty  by (2). The 

class is found by minimizing the distance t py y .

2.2. Linear Discriminant Analysis (LDA) 

PCA is optimal for representation. LDA [5][3] tries to 
find the subspace that best discriminates different classes. 
It is spanned by U  to maximize the ratio between the 
between-class scatter matrix bS  and the within-class 
scatter matrix wS . bS  and wS  are defined as follows: 
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where 
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n n , in  is the number of objects in the ith

class,
1
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m x n  is the mean vector for class iC ,
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m m  is the total mean vector, and i

jx  is the jth

sample in the ith class. The subspace of LDA is spanned 
by a set of vectors 1 1, , cU u u , according to: 
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The optimal projection direction U  can be computed 
from the eigenvectors of 1

w bS S . For recognition, the 
linear discriminant function for the class prototype px

and test object tx  is computed to minimize 
T

t pU x x . Generally, wS  will become singular, 

and LDA vectors are difficult to compute. 

2.3. Tensor Rank-One Analysis (TR1A) 

Shashua [6] demonstrated the efficiency of TR1A in 
image representation and classification compared with 
PCA. TR1A can accept an Mth-order tensor as input for 
further processing. Given an Mth-order tensor X , TR1A 
wants to find the optimal solution with a minimal possible 
r  to minimize  according to: 
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where R  is the number of rank-one tensors and r  is the 
rth reconstruction error. The rth reconstruction error r  is 
defined by an iterative method: 
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where j
ru  is the base vector for decomposition with 

1j
ru , and 

1 j

Mk k j
r r rj

uX  is a series of scalars for 

optimal reconstruction. For recognition, the prototype 
pX  for each individual class in the database and the test 

tensor tX  to be classified are projected onto the bases to 
get the prototype weight vector 1|k R

p k and the test weight 

vector 1|k R
t k . The test tensor class is found by 

minimizing the distance 1 1| |k R k R
t k p k .

3. Tensor Rank-One Discriminant Analysis 

The relationship between TR1A and TR1DA equals to 
the relationship between PCA and LDA. TR1A is optimal 
for representation and TR1DA is optimal for 
classification. 

3.1. Differential Scatter Discriminant Criterion 

We define the DSDC criterion in this paper, because 
of the weak convergence property in the previous work. 
The new criterion can converge quickly, and is given by: 

arg max .T T
b w

u
u u S u u S u                       (10) 

where  is a tuning parameter, u  is the projection vector, 
and ,b wS S  are the between- and within- class scatter 
matrices, respectively. DSDC is relevant to LDA and it 
can access the optimal solution with some proper tuning 
parameter , because LDA is defined by: 

max ;  . . 1,T T
b wu

u S u s t u S u                                (11) 
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which equals to: 
1min ;  . . 1.
2
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The Lagrangian equation of the problem is: 
1 1 1
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which equals to (11) with a proper tuning parameter .

3.2. Tensor Rank-One Discriminant Analysis 

Because TR1DA includes many variables, we first 
define all the variables used in this section. ,

k
i jX  is the ith

object in the jth class in the kth training iteration. For k=1,
we have 1

, ,i j i jX X . Moreover, ,
k
i jX  is an Mth-order 

tensor. ,1
jnk k

j i j ji
nM X  is the jth class mean tensor 

in the kth training iteration and 
1

ck k
jj

cM M  is the 

total mean tensor of all objects in the kth training iteration. 
j

iu  is the jth direction base vector for decomposition in the 
ith training iteration. With these definitions, TR1DA can 
be defined by the following equations: 
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From the definition of the problem in (14), (15), (16), 
and (17), we know that TR1DA can be calculated by a 

greedy approach, because of the lack of the closed form 
solution for the problem. The greedy approach can be 
seen from Figure 1. The calculation of ,

r
i jX  is based on 

the given 1
,

r
i jX  and 1 1|d M

r du . With the given 1
,

r
i jX  and 

1 1|d M
r du , we calculate 1

,
r
i j  via 1 1

, , 11 d

Mr r d
i j i j rd

uX .

The projection base vectors 1 1|d M
r du  can be obtained by 

the alternating least square (ALS) method. In ALS, we 
can obtain the optimal base vector 1

d
ru  with the given 

1 1|
i i d
r i Mu . We can conduct the procedure iteratively to 

obtain 1 1|d M
r du . The detailed procedure for TR1DA is 

given in Table 1. 

Table 1. TR1DA algorithm. 
Input: Training tensors , ,1 ,1i j ji n j cX  and the 
number of rank-one tensors R .
Output: The base vectors ,1 ,1i

ju i M j R

constrained by 1i
ju .

Step 0. Set 1
, , ,1 ,1i j i j ji n j cX X .

Step 1. For 1k  to R {
Step 2.     For 1l  to M {

Step 3. Calculate 1 1
, , , 11 d

Mk k k d
i j i j i j kd

uX X  with k>1

or 1
, ,i j i jX X  and set projection base vectors 

1|
d d l
k d Mu 1 . Here, 1 1

, , 11 d

Mk k d
i j i j kd

uX . With the 

given ,
k
i jX , calculate the class mean tensor k

jM  and the 

total mean tensor kM .
Step 4.  Optimize l

ku  according to (17) with the given 

1|
d d l
k d Mu 1 .

                      }//For loop in Step 2. 
Step 5. Conduct Steps 2-4 for a few iterations until 
convergence. 
            }//For loop in Step 1. 

According to the algorithm described in Table 1, we 
can obtain 1 1|d M

r du  iteratively. For TR1DA, we use the 

coordinate value 1 1
, , 11 d

Mk k d
i j i j kd

uX  to represent X ,

where 1X X  and 1 1
, , , 11 d

Mk k k d
i j i j i j kd

uX X . For 

recognition, the prototype pX  for each individual class in 
the database and the test tensor tX  to be classified are 
projected onto the bases to get the prototype weight 
vector 1|k R

p k and the test weight vector 1|k R
t k . The test 

tensor class is found by minimizing 1 1| |k R k R
t k p k .
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Unlike the existing tensor extension of discriminant 
analysis, the calculation procedure of the projection base 
vectors in TR1DA can converge. The following method 
can check the convergence of TR1DA. In the step 2, 3, 
and 4 of the algorithm, we can check the convergence 
through 

1
1l l

k kt t
u u  with , which is a small 

value. If 
1

1l l
k kt t

u u , the calculated projection 

direction in the tth iteration is equivalent to the (t+1)th

iteration. 

4. Experimental Results 

To demonstrate the ability of TR1DA, we utilize it to 
solve the elapsed time problem in gait recognition. Here, 
we first introduce our experimental data (gallery and 
probe) sets [4] and then report the performances of our 
TR1DA algorithm against PCA, LDA, and TR1A. 

Our experiments are carried out on the USF HumanID 
outdoor gait database [4]. The database consists of 1,870 
sequences from 122 subjects, and for each subject, the 
covariates are up to the following five: change in 
viewpoints (Left or Right), change in shoe type (A or B),
change in walking surface (Grass or Concrete), change in 
carrying condition (carrying a Briefcase or No Briefcase), 
and change in elapsed time (May or November) between 
sequences being compared. 

Average gait (AG) stands for the mean image (pixel by 
pixel) of silhouettes over a gait cycle within a sequence. 
AG is robust against any errors in individual frames, so 
we choose AG to represent a gait cycle, thus one 
sequence yields several AGs and each AG’s number 
depends on the gait cycle’s number in this sequence. In 
the following experiments, the AGs are utilized as the 
original data for the elapsed time gait recognition. All 
experimental results are based on non-overlapping gallery
and probe sets. 

We aim to compare the performances of PCA, LDA, 
TR1A, and TR1DA for the most difficult gait recognition 
covariate - elapsed time. So, we choose our gallery set 
(May, C, A, L, NB) from the May data and choose the 
probe set from the November data. 

We are facing eight pattern classification problems 
with the test sets of: CAL(Nov., C, A, L, NB),
CBL(Nov., C, B, L, NB) , GAL(Nov., G, A, L, NB),
GBL(Nov., G, B, L, NB), CBAL(Nov., C, A, L, BF),
CBBL(Nov., C, B, L, BF),  GBAL(Nov., G, A, L, BF),
and GBBL(Nov., G, B, L, BF).

All experimental results are shown in Table 2, which 
demonstrates the advantages of the proposed method by 
dimensionality-precision curves. According to the Table, 
both TR1DA and TR1A outperform the other two 
schemes consistently, and the former is even better than 
the later. 

Table 2. Experimental Results (%) 
ID. Probe Set PCA LDA TR1A TR1DA
1. (Nov., G, B, L, BF) 9.5 9.0 23.5 23.5 
2. (Nov., G, A, L, BF) 10.0 13.0 15.0 16.0 
3. (Nov., C, B, L, BF) 11.3 7.5 17.7 21.0 
4. (Nov., C, A, L, BF) 9.7 16.1 16.0 17.2 
5. (Nov., G, B, L, NB) 11.0 7.5 20.5 24.6 
6. (Nov., G, A, L, NB) 14.7 17.8 17.8 18.8 
7. (Nov., C, B, L, NB) 13.4 14.0 18.1 21.3 
8. (Nov., C, A, L, NB) 18.3 18.8 14.0 16.1 

5. Conclusion

A pattern classification method, named the tensor 
rank-one discriminant analysis (TR1DA), has been 
proposed in this paper. Through a series of experiments 
for elapsed time problem in gait recognition, TR1DA 
demonstrates its benefits compared with principle 
component analysis, linear discriminant analysis, and 
tensor rank one analysis.  
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