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ABSTRACT

This paper features two novel approaches to gait recognition;
one is frontal motion analysis, using a single camera. This
allows the use of other biometrics easily. Second is analysing
gait using of nonlinear dynamics of time series, normally used
in chaos theory, for classification.

A  set of point light sources attached to various points of
a walking person allows the walker to be identified. Phase-
space analysis of trajectories of these Moving Light Displays
(MLDs) provides sufficient information for identification of
people by their gait. Using chaotic measures to identify
humans by their gait sets a significant precedent.

1. INTRODUCTION

Gait as a biometric, has desirable properties. It is capable of
being used at long distances, is non-intrusive, non-invasive,
and is hard to disguise. It can also be combined with other
biometrics like face features[1][2][3] to give a more
robustidentification process.

In the main, current gait recognition approaches analyse
walking which proceeds in a plane parallel to a camera, the so-
called fronto-parallel (FP) view. This gives the largest
variation in silhouette from which the time series data is
obtained for analysis. From a far distance, this is
advantageous. However a clear field of view is needed and this
requires a large uncluttered area.

Motion from a plane perpendicular to this, the fronto-
normal view (FN), is considered as a special case. But very
commonly, people are made to queue up to access a facility. In
a corridor like structure, we assume that a subject will be
approaching a camera. In such situations gait is used as a
supporting biometric because as the subject draws nearer,
other biometrics such as face or iris can be used for robust
recognition. In summary, the advantages of the FN view are:

i) Single camera deployment.
ii) Ease of combining other biometrics.
iii) Smaller physical space needed.

This approach has its own unique challenges when fast and
reliable recognition is necessary.

Johansson's[4] experiments with Moving Light Displays
(MLD) did notshowed that without the use of the body
silhouette, and when walking, the cadence and position of the
MLDs allowed for identification of the subject as a human.

A recent survey on gait[5] divided up the main approaches

on gait into model based and model free. 
Model free approaches look for changing features in the

video frames without considering the object. In the Model
based approaches assume that the image of the 3D human is
projected onto a 2D image. This constrains the type of motion
and allows us to find the parameters for the type of
movement. In this way, the movement of body part may be
dynamically analysed.

Phase space
The motion of the MLDs create a time series of point
coordinates. In doing so, we may create a phase space and use
the appropriate methods to analyze the motion. However,
much of the work in this area, as applied to human action
analysis, focuses on motion recognition. Thus they do not
attempt to distinguish motion between individuals, but rather
identify a motion among several for an individual. 
          In the work by Campbell and Bobick[6],  phase space is
employed to characterize body movements using a matching
criterion to identify the motion. Moeslund and Granum[7]  use
an Analysis-by-Synthesis approach, employing phase space to
describe the motion of the model. This space is reduced by
kinematics and geometric constraints corresponding to
movement and placement of the body parts.

Chaotic biological movement
Van Emmerik et al[8] in a tutorial overview, discuss how
various seemingly simple human actions are the result of the
interaction of complex systems. West and Scafetta[9] analyze
the stride length of humans which have been shown to be
slightly multifractal which can be modelled using nonlinear
oscillators. Dingwell and Cusumano[10] attempt to quantify
local dynamic stability of human walking to identify subjects
who were prone to falling. This was done using chaotic
measures.

The concept of phase-space analysis of chaotic systems is
extended here to enable joint analysis of a number of motion
trajectories at the same time. The trajectories specify motion
of a number of MLDs during a short distance walk. We can
thus characterize their behaviour in a compact way. 

2. INITIAL TRACKING EXPERIMENTS

In frontal gait recognition, we use feature points that have
more motion in the image plane. This would be the hands, feet
and knees, for a FP walk. For a FN walk this is also true,
although the motions are smaller in magnitude. We set up the
coloured markers as shown in Fig. 1, for the two kinds of
walk.
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Fig. 2. Unnormalized FP
walk data 

Fig. 3. Normalized FP walk
data

Fig. 4. Autocorrelation plot of left marker
trajectories  - FP Left to Right

Fig. 7. Mutual Information - all markers for a person - FN

Fig. 1. Marker designations

The designations are as follows: 

Left/Right HAND Left/Right  FOOT Left/Right KNEE
lh/rh lf/rf     lk/rk

Two additional discs of the same colour are attached at the
waist and neck level. They are used for distance normalization,
due to the looming effect of a FN walk. They are:

Top/Bottom MARKER - tm/bm

The markers are tracked using the CAMSHIFT[11] algorithm.
We take video clips of twelve subjects and a further three for
testing. The unnormalized and normalized plots are shown in
Fig.2 and Fig. 3.

Next, the autocorrelation plot in Fig. 4 shows the strong
periodicity in movement, especially in the x-axis which
swamps out the “non-periodic” signal in the y-axis.

For a FN walk, the unnormalized and normalized trajectories
are shown in Fig. 5 and Fig. 6

In contrast, the autocorrelation plot for FN gait does not show
any periodicity in any of the twelve marker trajectories. This
is an indicator of nonlinear dynamics or chaotic behaviour.

3. DYNAMICAL ANALYSIS

To test for chaotic behaviour, the scalar time series is
subjected to dynamical analysis which assumes that the time
series data X is generated by a vector valued process. The
actual state vectors describing this process may never be
known. But we can create a  set of  phase space vectors which
are topographically equivalent, and can be considered to be a
reconstruction of them. Takens[12] "method of delays" is an
established method for doing this. He also shows that if the
dimension of the phase space vectors m is larger than the
dimension of the chaotic attractor D, we can say that the phase
vectors embed the state vectors and,

m > 2D + 1 (1)

Thus the reconstructed trajectory of X is made up of several
phase space vectors as follows:

  where Xi is the state of the system at
sample i.

Each row of X is a phase-space vector with a length of the
embedding dimension m. That is, for each Xi,

 where � is the time lag. 

This being for a time series x = {x1, x2,..., xN} with N points. So
X is a M by m matrix, and we have M the number of phase
space vectors being N � (m � 1)�.

There are several ways to determine the parameters m and �.
For �, the standard method is to take the time when the
autocorrelation plot first goes to zero. But we see that it never
reaches zero, so we use the time delayed mutual information
measure as proposed by Fraser and Swinney[13]. A sample
plot is shown in Fig. 7 for one person

The point at which the first minimum of the plot is taken to be
the best value for � which is 2, in this case, for all twelve
marker trajectories.

For m, we use the method of false nearest neighbours (FNN)
Fig. 5. Unnormalized FN
walk data

Fig. 6. Normalized FN walk
data
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Fig. 8.False Nearest Neighbour plot

Fig. 9. Largest Lyapunov Exponents: Rosenstein’s method

as proposed by Kennel et al[14] and shown in Fig.8.

We find the smallest value to be six. This is for all twelve
trajectories belonging to all twelve subjects.

4. MEASURING CHAOS WITH LYAPUNOV
EXPONENTS

There are several measures of chaotic behaviour, the largest
Lyapunov exponent �1 being the most useful and commonly
used. If the system equations generating the data is known, it
is quite straightforward to calculate it. 

It describes how quickly trajectories approach or come
together, given different initial conditions. This comes directly
from a definition of chaos. Let the Euclidean distance between
them be d. Then �1 is the mean exponential rate of divergence
of two initially close orbits from an initial time t0 to tR, :

(2)

One of the more recent methods to calculate �1 is by
Rosenstein[15] and  independently, by Kantz[16]. This method
is suitable for small and noisy data sets.

From the above, we assume a fixed samping time period �t
and sample number i, so that tR-t0 = i�t. Taking logarithms on
both sides of (3), we have:

d(t) = Cj exp �1(i�t) (3)

where C is a constant. Alternatively, from (3), for each time
point i,

log2 d(ti)  = �1 i�t + log2 d(ti-1) (4)

Which are a set of approximately parallel lines for i  = 1 to M.
Thus we can find the largest Lyapunov exponent by fitting a
line using Least Squares to the average line:

(5)

where dj is the distance between the jth set of points. This is

done for all Nj which are the number of points.
This averaging process cycles through all the available

data points and will also reduce the effect of noise in the data.

Fig. 9 is a plot for the twelve marker trajectories of a person.

We see that the data is mildly chaotic as �1 is positive.

5. RESULTS 

A table of �1 values is generated for all videos of the twelve
subjects and the three test videos. Because of the limited page
size, we show the table for three subjects and a second video
taken of them a few minutes later. These are  gjh/gjh1, ht/ht1
and tl/tl1. The suffix ‘1' denotes the second video.

TABLE 1  �1 VALUES
�2m5 gjh gjh1 ht ht1 tl tl1
lhx 1.801 3.710 1.781 2.073 2.242 2.026
lhy 3.726 4.853 2.506 3.572 2.614 1.770
rhx 3.629 2.633 4.016 3.811 2.975 2.582
rhy 3.869 3.333 4.431 3.027 2.962 2.230
lfx 2.495 2.332 2.347 2.112 1.535 1.760
lfy 2.745 1.740 2.256 2.864 2.233 2.219
rfx 2.280 3.145 2.391 2.185 1.985 2.024
rfy 2.832 3.352 3.680 4.267 1.103 3.181
lkx 2.710 2.490 1.988 1.882 2.308 1.644
lxy 4.088 2.641 1.888 2.472 1.912 2.450
rkx 3.395 3.361 2.505 2.173 1.561 1.293
rky 2.877 3.361 3.168 2.538 1.605 2.453

avg 3.037 3.079 2.746 2.748 2.086 2.136
var 0.67 0.76 0.84 0.74 0.56 0.48

A significant observation here is that the average �� 1, of all the
�1 for a person is relatively constant for the three subjects gjh,
ht and tl. To test this out, we vary � and m and for each subject
and calculate the average of the differences ��� 1 between each
pair of subjects.
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     TABLE 2  �1 VALUES FOR VARIOUS �,m
gjh gjh1 ht ht1 tl tl1 ����1

T2m5 0.04 0.00 0.05  0.03
avg 3.04 3.08 2.75 2.75 2.09 2.14

T2m6 0.01 0.07 0.15 0.11
avg 2.98 2.99 2.64 2.57 1.86 2.01

T2m7 0.04 0.07 0.06 0.07
avg 2.91 2.87 2.50 2.42 1.75 1.82

T2m8 0.03 0.15 0.09 0.12
avg 2.72 2.75 2.32 2.17 1.61 1.70

T3m5 0.04 0.03 0.07 0.05
avg 2.80 2.76 2.32 2.35 1.74 1.81

T3m6 0.10 0.10 0.78 0.44
avg 3.12 3.02 2.65 2.55 2.04 2.83

T3m7 0.12 0.11 0.11 0.11
avg 2.41 2.30 1.76 1.65 1.17 1.28

T3m8 0.14 0.13 0.21 0.17
avg 2.10 1.96 1.46 1.32 0.84 1.05

T4m6 0.02 0.01 0.18 0.10
avg 2.10 2.09 1.36 1.35 0.94 1.12

T4m7 0.03 0.24 0.25 0.24
avg 1.67 1.69 1.12 0.88 0.59 0.84

T4m8 0.15 0.22 0.28 0.25
avg 1.31 1.47 0.89 0.66 0.35 0.63

We want the differences to be as small as possible, which is
true for �=2 and m=5, which is close to 6. Thus we receive
independent confirmation that the parameter values are valid.

We see that by measuring chaos in gait, we can characterize a
person’s walk. Now, other people can have similar values of
�� 1 .The following confusion matrix shows this.

TABLE 3 CONFUSION MATRIX
PREDICTED/ACTUAL in %

 cck gjh ht jl lal ma ohl ry st tl wkc wwy

cck 100    
gjh 50 50

ht 100
jl  33  33 33

lal   100
ma  33  33 33
ohl 33 33 33
ry 50 50
st 100
tl 100

wkc 50 50
wwy 50 50
�� 1 2.58 3.04 2.75 2.32 2.41 2.34 2.31 2.67 2.87 2.09 3.03 2.69

A useful partitioning of subjects has been achieved. The use of
�� 1 shows promise as a feature for classification. This paves the
way for future work in this direction.

6. CONCLUSIONS

Clinical studies on gait show that it is chaotic in nature.
Current approaches using the fronto-parallel view in the
analysis of motion does not capture this fact, but indicate that
the movement is grossly periodic.

The experiments we performed demonstrate that fronto-

normal view shows  chaotic motion more clearly and allows us
to use the Largest Lyapunov Exponents to characterize gait.
This is a very important result which says that the significant
information for gait recognition lies within the chaotic
behaviour of the motion trajectories rather than the
cyclostationary parts. Future work will require a larger
database of subjects and markerless tracking. There will also
be a need to see if other combinations of �1 or with other
biometrics are useful as well.
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