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ABSTRACT

Methods for detecting edges, be they multidimensional
or multiresolution, ultimately reduce to finding extremal
points, first derivatives or zeros of second derivatives.
However, problems such as missing edges, weak edges
due to thresholding, derivatives not existing and false
edge generation, are some of the consequences. We
adopt a new formalism: Edges are singularities of the
mathematically smoothest function possible - the com-
plex analytic function. We embed a real image into
the real part of an analytic function. After solving the
conjugate harmonic problem, edges in discrete images
are identified from the imaginary part. The analytic
function model is inherently two-dimensional and an
invariant measure. Comparisons are made with other
standard edge detection methods. We outline issues
that need to be considered for establishing analytic
functions for edge detection.

1. INTRODUCTION

Identifying edges in one-dimensional signals invariably
entails as a first process, a search for local extrema
of the smoothed (continuous) signals. Procedures for
finding extremal points can be divided into four groups.
These, with some typical examples are, gradient based
methods [7], [1], methods based on the orientation of
the gradient [3], those based on the phase of the Fourier
component [4], [2] and finally, methods based on fitting
a model [5].

There are problems with these approaches. They
are inherently one-dimensional methods. Extension to
higher dimensions using tensor products and the corre-
sponding cartesian sampling structure, is not efficient
[6] leading to poor representation of discontinuous func-
tions. Even in the one-dimensional case, there can be
problems identifying extremal points: The first is that
in many applications, the values at the edge points
may vary, as for example in the Canny edge detection
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[1] method, thus possibly loosing weak edges. Taking
derivatives can also be problematic. Search for extrema
itself can generate false edges.

In this work we introduce a new formalism for defin-
ing edges. While edges are typically identified through
extremal points, edges can also arise through disconti-
nuities of various orders and other irregularities of func-
tions. To converge on an appropriate definition of an
edge, we ask the question: What is not an edge? A first
response may be C* functions, that is functions having
k continuous derivatives where k is a positive integer.
Function f(z) = |z|®> has two continuous derivatives
at = 0 but not three. The function has a “corner”
at ¢ = 0. Hence it is not an edge if £k < 3, but an
edge otherwise. In general, we may wish to use C'°,
that is, infinitely differentiable functions called smooth
functions as the constraint for non-edges. But there are
still C*° functions, such as the bump function [8] which
looks like a bump (edge), and hence does not satisfy
our goal of “complete” smoothness for non-edges.

Are there smooth functions that do not include the
bump function? The answer is “yes” - analytic func-
tions. The bump function is not an analytic function
(ibid.) Accordingly, we choose the latter function to
formalize our definition of a mon-edge. An analytic
function is the smoothest function possible. Hence, we
will define an edge as that which corresponds to points
where the function is not analytic. All other definitions
of edges - extrema, discontinuities, irregularities, etc.,
are subsumed by this definition.

The paper is organized as follows: In Section 2, we
discuss singularities, analytic functions, show images
of analytic functions and define edges. In Section 3 we
solve the conjugate harmonic problem and show how
we use the imaginary part modulus to find edges in
discrete images. Experimental results and comparison
with other methods are shown in Section 4. In Sec-
tion 5 we describe issues that need to be considered
for establishing the analytic function model for edge
detection.
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2. SINGULARITIES, ANALYTICAL
FUNCTIONS AND EDGES

Intuitively, a singularity is a point where a function,
equation, surface etc., misbehaves or becomes degener-
ate. In the mathematical theory of singularity, a singu-
larity is a point at which a given mathematical object
is not defined or where it fails to be well-behaved. In
analytic function theory, singularities are points where
the function fails to be analytic. That is, it is not a
C* function which is complex differentiable.

Analytical functions have singularities, classified as
removable, pole or essential. In our new definition, it is
the pole and essential singularities that constitute edge
points. A complex function f(z), z complex, is called
analytic when it is complex differentiable in an open
domain in the z-plane. The necessary conditions for a
function f(z) = u(z) + jv(z) to be differentiable at a
point are called the Cauchy-Riemann equations:

du(z) _dv(z)  du(z) __du(z) (1)

or dy Qy ox

An analytic function has derivatives of all orders in the
region in which it is analytic. When f(z) is analytic,
both the real and imaginary parts u(z),v(z) are har-
monic functions, that is, they satisy Laplace’s equation.

As an illustration of analytic functions and their
smoothness property, we consider two simple exam-
ples. Let fi(z,y) = v® — 322y + i(23 — 32y?), and
falx,y) = 22(1 —y) + i(2? — y? + 2y). Figures (1)
and (2) show the real and imaginary part of the ana-
lytic function f; and fo respectively. We observe that
both two elements of the analytic function - real and
imaginary parts, are smooth functions that are either
monotonically increasing or decreasing in some direc-
tion. Nomne of them can have discontinuities of any
order; none of them can have a modulus that has a
local maximum. Essentially, all the maps are devoid
of any and all significant features. These character-
istics are typical of analytic functions. Any deviation
from this infinite smoothness results in non-analyticity.

Definition: An edge of an image u(z,y) is the set
of points where the associated complex function has
a pole or essential singularity. Equivalently, where its
conjugate harmonic function v(x,y) has infinite mag-
nitude or does not exit.

The application of this definition of an edge to the
edge detection problem in discrete images, proceeds
as follows. A continuous function wu(z,y) is derived

(a) (b)

Figure 1: (a) Real part, (b) Imaginary part.

Figure 2: (a) Real part, (b) Imaginary part.

from the original discrete image u(m,n) by interpola-
tion or approximation. This is assumed to form the real
part of an analytic function f(z,y), that is f(x,y) =
u(x,y)+jv(z,y). Solving the conjugate harmonic prob-
lem using the Cauchy Riemann equations, generates
the imaginary part v(z,y). Points (singularities) where
the signal is not analytic, that is, where edges exist, are
identified by points where |v(z,y)]| is infinite. This fol-
lows from the assumption that |u(x,y)|, stemming as
it does from a bounded u(m,n), is bounded. Corre-
spondingly, and in practice, we obtain that |v(m,n)| is
very large, even for low magnitude singularities.

We observe two features of the analytic function
model: The first is that it is an invariant measure in
that any deviation from infinite smoothness, no matter
how small, leads to an infinite |v(z,y)|. Secondly, im-
posing an analytic constraint on the image inherently
imposes a 2-dimensional (non-separable) characteriza-
tion.

3. THE CONJUGATE HARMONIC
PROBLEM

We have the following problem, known in the litera-
ture as the conjugate harmonic problem: For f(z,y) =
u(z,y) + ju(z,y) an analytic function in some domain
D, given u(x,y) can we find v(z,y)? We proceed as
follows: We interpolate u(x,y) of the discrete image

u(p, ¢) in such a way that allows the constant in v(z, y)
to be a function of only z. We achieve this by (i)utilizing
a tensor product of cardinal B-splines and (ii) through
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selection of the order of the B-splines. Finally, use of a
separable basis makes the analysis tenable. We deter-
mine the interpolated function u(x,y)

N,M
w@y) = D GmnBm(r)Ba(y).
n=1,m=1
such that

u(:z:, y)‘(m,y):(p,q) = u(p, Q)v

where u(p, q) is the given data.

We use the first Cauchy-Riemann condition to ob-
tain v(z,y) from u(x,y) as

va,y) = /1”3“(”5 Qulz:0) 4, 4 (a)

ox
= am”/ Bl.( v)dv + C(x)
n=1m=1
N,M Y
= Z amynB;n(:v)/ By, (v)dv
n=1m=1 1
+C(x), (2)

where C'is a function that depends only of the variable
x. We will see how to choose the order of the B-spline
to satisfy this condition. Then, applying the second of
the two Cauchy Riemann conditions to equation (2),
we get

' _ dv(z,y) _
Cle) = oz
O ey G Bl () [ By (v)dv)
ox
u(z,y)
— oy
O et mn Bl (2) [} Bu(v)dv
oz
N,M
= Z am,an(x)B;z(y)*
n=1m=1
O oy amn Bl (2) [ By(v)dv
oz
N,M
== Y amaBn(@)B(y) -
n=1m=1
N,M

Y amaB@) /1 " Bov)dv.

n=1m=1

In order for the function C' to depend only on z, the
terms depending on y in equation (3) must be elim-
inated. Therefore, taking the order of the tensor B-
spline equal to 2, i.e; m = 2 and n = 2, we get

’

B, (y) = ayn, where a,, are constants,
and B
B,,(z) =0.
Therefore
N,M y
Z am,an(x)/ B, (v)dv =0
n=1,m=1 1
Hence
N,M
C'x) == Y antmnBn(@) (4)
n=1,m=1

Therefore C' will not depends on y. Thus from equation
(4), we get

M N,M

/ Z Gy, B, (W) du

n=1m=1

S Z anamm/ B, (u)du + b,
1

n=1m=1
(5)

where b is a constant. We choose b = 0. Therefore,
combining equations (2) and (5) we get
n=1m=1

y
m)/ B, (v)dv —
1
N,M -

Z AnQm,n / B, (U) dU7

n=1,m=1 1

N,M

Z am,nBvln(

U(‘Tay) =

Therefore

N,M

Y amaBn(®) /1 an(v)dv—

n=1m=1

v(p,q) =

i / B (1)

n= 1m1

4. EXPERIMENTAL RESULT

Given a discrete image u(p, q) we generate the imag-
inary part v(p,q) of f(p,q) = u(p,q) + iv(p,q) using
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equation (7). Input image data has integer values be-
tween 0 and 255. |v(p, ¢)| is mapped to unsigned 8-bit
integers. The reason is that image features have very
large values. We use an upper bound of 255 to make
the detection invariant to the image intensity. In addi-
tion, since we are using the tensor product as a scheme
for interpolation, we apply the same algorithm to four
flipped versions of the image and then flip back the
result. The four results are added.The algorithm is ap-
plied locally using a 5 x 5 window.

Results from the new method are compared empir-
ically with those from two known methods [1], [2]. We
do not include non-maximal suppression or threshold
processing. For the Canny edge detector, we use o0 = 1.
We first note that the background of both test images,
Figures (3-(a), (e)) look like harmonic functions with-
out any interesting features. As expected, in the new
method Figures (3-(b), (f)), we do not see any features
in the background. In contrast, the Phase Congruency
method, Figures (3-(c), (g)) exhibit artifacts. Edges in
the new method are clean and have almost the same
magnitude in contrast to Canny’s method, Figures (3-
(d), (h)) where the magnitude of the edges vary.

5. FURTHER INVESTIGATION

The quality of the analytic function based edge detec-
tor needs to be determined and performance evaluated
with respect to localization and spurious response. Dif-
ferent interpolation and approximation schemes in two-
dimensions, such as triangulation, moving least squares
scheme and using multiquadrics need to be considered.
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