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ABSTRACT

This paper presents a classifier built for differentiating digital
photorealistic images from digital photographs. Results show
that our 144-dimensional (144-D) feature vector extracted from
characteristic functions of wavelet histograms is more effi-
cient than Lyu and Farid’s 216-D feature vector [1], and Ng
et al.’s 192-D feature vector [2]. Our classifier outperforms
Lyu and Farid’s state-of-art method while only requiring half
of their feature extraction and testing time.

1. INTRODUCTION

(a) (b)

Fig. 1. Examples of photorealistic and photographic images.

Advances in computer graphics, such as recursive ray trac-
ing [3] and subsurface scattering [4], have made it easier to
generate photorealistic images, destined for entertainment and
advertisement applications. Indeed, many computer-generated
photorealistic images pass the visual test very satisfactorily.
Fig. 1 shows two example images: even a careful visual exam-
ination does not reveal which one is a photograph and which
one is a photorealistic image.1 However, perceptual indistin-
guishability between photographs and photorealistic images
does not imply complete indistinguishability. Even the most
sophisticated rendering algorithms are based on rough mod-
els of the real world where photographs are produced through
complex interactions among objects, photons, and imaging
devices, let alone simplistic ones that only aim at perceptual
realism. The deviation of the computer simulating process
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1In Fig. 1, (a) is a photorealistic image and (b) is a real photograph.

from the real-world physics results in statistical differences
between photographs and photorealistic images. If we find
appropriate image features that capture the statistical differ-
ences, we can design a two-class classifier, using standard
methodology from computer vision and pattern recognition.

Differentiating between photographic and photorealistic
images serves two purposes. On the one hand, it helps com-
puter graphics researchers identify potential areas of improve-
ment in their algorithms to mimic the true physical world. On
the other hand, the level of photorealism in computer graph-
ics is so convincing that we need to reestablish the trustwor-
thiness and integrity of photographs in applications such as
criminal investigation and journalistic reporting. Although
currently people are mainly concerned with the integrity of
digital photography [5], and reality-forging incidents happen
mostly with manipulation of digital photographs [6], it is rea-
sonable to believe that in the near future, the same incidents
can happen with photorealistic images.

Two groups of researchers have focused on the differen-
tiation between photographic and photorealistic images. Lyu
and Farid [1] use an image statistical model built on a wavelet-
like decomposition, and take the first four order statistics (mean,
variance, skewness, and kurtosis) of the subband coefficients
and the inter-subband prediction errors as features with a to-
tal number of 216. Ng et al. [2] take a geometry-based ap-
proach to model physical differences in the generation of pho-
tographic and photorealistic images, where 192 features are
extracted from analysis on local patch statistics, local frac-
tal dimension, surface gradient, quadratic geometry, and Bel-
trami flow.

In this paper, we use a wavelet-based statistical model to
extract features from the characteristic functions of wavelet-
coefficient histograms. Our 144-D feature set takes half of the
extraction time of Lyu-Farid’s 216-D feature set, and achieves
better classification results. Since we use global image statis-
tics, we do not pinpoint specific geometrical differences in
photorealistic images as Ng et al. may be capable of doing.
However, results on the same image datasets show that our
method can achieve a detection rate of 100% at a false alarm
rate of 0.1% with a feature extraction and testing time about

II  161142440469X/06/$20.00 ©2006 IEEE ICASSP 2006



1/33 of that reported by Ng et al. in [2].

2. FEATURE EXTRACTION

The statistical features we propose for classification between
photographic and photorealistic images are extracted from the
characteristic functions of wavelet-coefficient histograms. For
a RGB color image, we apply a three-level discrete wavelet
transform to each color channel. At each level l ∈ {1, 2, 3}
of color channel c ∈ {r, g, b}, there are smooth, horizontal,
vertical, and diagonal subbands, denoted as Sc

l , Hc
l ,V c

l , and
Dc

l . Hence, there are 36 (= 3× 3× 4) resulting subbands. To
further exploit the statistics of the coefficients in subband Dc

1
,

we decompose Dc
1

into four second-level subbands too, de-
noted as Sc

2′ , Hc
2′ , V c

2′ , and Dc
2′ . Hence, we have a total of 48

subbands. For each subband, we partition the range of coeffi-
cients x into bins, i.e., disjoint intervals of equal lengths, cal-
culate the number of data samples in each bin, and obtain the
normalized histogram {h(m)}, where m ∈ {0, 1, . . . ,M−1}
denotes the mth bin.

If we use the histograms in 48 subbands as features, they
capture global image statistics fully but at the cost of large
memory requirements and computational complexity. Indeed,
there are usually hundreds of bins in each histogram. So, we
need to extract low-dimensional features that are informative
for classification.

(a) not-so-photorealistic (b) photorealistic-yet-noisy

Fig. 2. Examples of questionable photorealistic images.

To find such features, we should consider certain attributes
of computer-generated images. A typical artifact of images
generated with very basic algorithms is that they have sim-
ple scenes where only a small number of objects exist with-
out much depth. Besides, those objects often have a plas-
tic/rubber feel because of a lack of details such as dust and
small defects, subtle color variation, and radiosity caused by
indirect lighting or specularity caused by light sources. Fig. 2 (a)
shows one such not-so-photorealistic example. One simple
way to address above problems is adding noise to simulate
dust or texture on object surfaces [7]. Ray-tracing algorithms
are physically-accurate better solutions. However, they are
often operated at low-sampling rates due to computational
limits, which result in noisy artifacts [8]. Fig. 2 (b) shows
one such photorealistic-yet-noisy example. While adequate
noise does increase image’s visual naturalness, the resulting
image possesses unnatural statistical characteristics.

Fig. 3 shows the normalized histograms of the first-level
diagonal subband coefficients of Fig. 1(b) (photographic), Fig.

2(a) (not-so-photorealistic), and Fig. 2(b) (photo-realistic-yet-
noisy). The wavelet coefficients of photographs is well mod-
elled by a generalized Gaussian distribution (GGD)

pα,β(x) =
β

2αΓ( 1

β )
exp

{
−

(
|x|

α

)β
}

, (1)

where Γ(·) is the Gamma function, α > 0 is the scale param-
eter, and β > 0 is the shape parameter. Most photographs
have distributions with β ≤ 1, i.e., Laplacian-like. α = 0.7
and β = 0.4 are estimated for the normalized histogram of
Fig. 1(b). Not-so-photorealistic images have much more zero-
valued wavelet coefficients and are best modelled as a mix-
ture of Dirac delta function δ(x) and a GGD. In contrast,
photorealistic-yet-noisy images have different characteristics:
the distribution is smoother in the vicinity of x = 0 and is well
modelled by a Cauchy distribution with scale parameter b

pb(x) =
b

π[x2 + b2]
. (2)

b = 1.8 is estimated for the normalized histogram of Fig. 2(b).
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Fig. 3. Normalized histograms of the first-level diagonal sub-
bands of three intensity images. Their color versions are
shown in Fig. 1(b), Fig. 2(a), and Fig. 2(b), respectively. The
Haar wavelet transform is used.

The classification problem studied in this paper bears sim-
ilarities to steganalysis. A basic steganalysis problem is to
classify between real photographs and steganographic images
generated by imposing information-bearing noise to original
photographs. Similar to photorealistic-yet-noisy images, the
distribution of the wavelet coefficients of steganographic im-
ages is smooth around x = 0 and Cauchy-like. In [9], we
proposed a set of features and demonstrated their efficiency
in the steganalysis problem. It turns out that the same set
of features work well in differentiating photorealistic images
and photographs. The significant difference in this paper is
that we need to distinguish not-so-photorealistic images from
photographs as well, i.e., histograms with extremely strong
peak from those with moderate peak.

The set of features we used in [9] are calculated from the
characteristic functions of normalized histograms. A K-point
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discrete Fourier transform (DFT) is performed on the normal-
ized histogram {h(m)} to obtain its characteristic function

H(k) =
M−1∑
m=0

h(m) exp{−i2πmk/K}, 0 ≤ k ≤ K. (3)

Fig. 4 shows the corresponding DFT amplitude plots for the
three normalized histograms in Fig. 3. Not-so-photorealistic
images have both significant high-frequency and low-frequency
components because of the exceedingly strong peak at value
0; photographic images also have significant yet weaker high-
frequency components due to the moderate peak in Laplacian-
like distributions; photorealistic-yet-noisy images have fast
decreasing high-frequency components while packing most
of their energy in low-frequency components because of the
smoother curvature at value 0 in their Cauchy-like distribu-
tions. Hence, we calculate three features from each histogram:
two that convey information about the high-frequency com-
ponents and one that convey information about the low- to
mid-frequency components. The three features are defined as

f1 =

K/2∑
k=0

|H(k)| sin(
πk

K
), (4)

f2 =

K/2∑
k=0

|H(k)| sin2(
πk

K
), (5)

and

f3 =

K/4∑
k=0

|H(k)| sin(
4πk

K
). (6)

Clearly, f1 and f2 are obtained by high-pass filtering the nor-
malized histogram and f3 by band-pass filtering. f1 and f2

are related to upper bounds on the first and second discrete
derivatives of the normalized histogram, respectively. A vari-
ant of f1 and f2 was proposed by Xuan et al. in steganaly-
sis [10]. f3 is crucial to improve classification performance
and—to the best of our knowledge—a new feature that no
one used before. From Fig. 4, we expect that for not-so-
photorealistic images, they have the largest f1, f2 and f3; for
photorealistic-yet-noisy images, they have the smallest f1 and
f2 and the second largest f3; while for photographic images,
they have the second largest f1 and f2 and the smallest f3.
Hence, the three features distinctively reflect the class that
images belong to. There are a total of 144 features available
(3 for each 48 subbands).

3. CLASSIFICATION RESULTS

We use a simple Fisher linear discriminant (FLD) classifier
for the automatic classification. We omit the details of the
FLD analysis, which can be found in [11]. Although we may
be able to achieve better classification results by using more
complex classifiers such as support vector machines (SVM),
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Fig. 4. Corresponding DFT amplitude plots of histograms in
Fig. 3 and filter amplitude plots used by Equations (4)—(6).

our results show that our feature selection is very effective
even with the FLD classifier. We normalize the features so
that they have comparable dynamic ranges.

We built our photographic (PG) dataset by downloading
4546 photographic images from www.bigfoto.com and
www.freefoto.com, and our photorealistic (PR) dataset
by downloading 3844 photorealistic images from www.raph.
com and www.irtc.org. All photographs and photoreal-
istic images are RGB color images, JPEG compressed with
quality above 80%, and 600 × 800 pixels in typical size. All
the image datasets consist of a wide range of outdoor and in-
door scenes, including nature (e.g., trees, animals), portraits,
man-made objects (e.g., signs, architectures, cars), etc. We
also downloaded the photographic (PIM) and photorealistic
(PCCG) datasets collected and tested on by Ng et al. in [2].

We use 2273 photographic images from the PG dataset
and 1922 photorealistic images from the PR dataset to train
our classifier, then apply the classifier to the remaining 2273
photographic images in the PG dataset, the remaining 1922
photorealistic images in the PR dataset, the 800 photographic
images in the PIM dataset, and the 606 photorealistic im-
ages in the PCCG dataset.2 We randomly split the PG and
PR datasets to select training/testing images so that we avoid
flukes for specific splits. The reported results are averaged
over 1000 random splits. Although our classifier is trained
only on the PG and PR datasets, it has the same good results
on the PIM and PCCG datasets too, which demonstrates our
classifier’s strong generality.

Fig. 5 compares the test false alarm (FA) probabilities
(percentage of photographic images that are misclassified as
photorealistic) based on our 144-D feature vector and on Lyu-
Farid’s 216-D feature vector. The classifier with our feature
selection has better test false alarm probability performance,
especially at low operating FA rate below 1%. It is remark-
able that our feature selection has 100% detection rate (ability
to correctly classify photorealistic images, Fig. 6) on both PR

2Due to some broken world wide web links, we could only find 606 out
of 800 images in the PCCG dataset.
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and PCCG datasets, for every single one of the 1000 random
training/testing splits. Lyu-Farid’s feature selection has 100%
detection rate on the PCCG dataset but consistently errs on
some photorealistic images in the PR dataset. The trouble-
some images include both complex and simple scenes. Fig. 7
shows two examples misclassified by Lyu-Farid’s feature se-
lection. Moreover, the extraction and testing time for our
classifier is 2.8 seconds for a 384 × 384 image while that for
Lyu-Farid’s is 5.6 seconds when implemented in Matlab 6.1
running on the Windows XP Professional platform and a Pen-
tium 4 1.8GHz CPU. Both wavelet-based feature selections
take much less time compared to ∼ 92 seconds3 taken by Ng
et al.’s geometry-based feature selection [2].
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Fig. 5. Test false alarm probabilities on the PG and PIM
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