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ABSTRACT

This paper presents a shift-invariant complex directional pyramid
transform constructed by a dual-tree pyramidal directional filter banks
(DFB). The double filter bank framework consists of a shift-invariant
Laplacian pyramid and a dual-tree DFB. The two binary tree struc-
ture for the (primal and dual) DFBs employed in the structure are
identical except for the filter bank employed at the second level of
the dual DFB, where special conditions on the phase of the filters are
required. It is proven analytically and experimentally that each pair
of corresponding directional filters produced by the primal and dual
filter banks are symmetric and anti-symmetric, which can be inter-
preted as the real and imaginary parts of a complex filter. Therefore,
the two subband coefficients can be viewed as the real and imag-
inary parts of a complex-valued subband image. It is proven that
there is no aliasing in the decimated complex-valued signal, which
implies that the system is shift-invariant in the energy sense. In ad-
dition, the proposed shift-invariant, multiscale, multidirectional im-
age decomposition has two unique characteristics that other shift-
invariant decompositions do not possess. First, the directional reso-
lution of the image transform can be arbitrarily high. Secondly, the
two-dimensional filter bank is implemented in a separable fashion,
which makes the entire structure very computational efficient.

1. INTRODUCTION

Wavelet and filter bank (FB) have been a major research topic in
signal processing for the last two decades [1]. The discrete wavelet
transform (DWT) has been shown to be an optimal representation of
one-dimensional (1-D) piece-wise smooth signals and found wide-
spread use in many signal and image processing applications. How-
ever, there are limitations of the separable DWT, namely translation
variance and lack of directionality. The shift-variant property of the
DWT means that the representation of signal by wavelet coefficients
is dependent on the position of the signal. Since the subsampling
operators are linear but shift-variant, translation invariance of the
transform can not be obtained. However, a reduced form of trans-
lation invariance exists, namely energy shift-invariance or ‘shiftabil-
ity’. This will happen if aliasing in the decimated signal is negligi-
ble. This condition implies that the frequency spectrum of the signal
before being decimated is strictly bandlimited inside a region of less
than the Nyquist frequency associated with the downsampling ratio.
In [2], the authors stated and proven that energy shift-invariance is
equivalent to the possibility of interpolating the original signals from
the decimated signals.

Another problems of the DWT is that it has limited angular res-
olution. For a two-channel FB such as that used in the DWT, the
2-D FB produces four sub-images, which are usually referred to as
LL, LH, HL and HH images. The LH and HL images contain fea-
tures along the horizontal and vertical directions, but the HH image
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contains diagonal components of both directions. If the directional
selectivity of a FB is defined as the ability to extract orientational
features into separate images, then the two-channel separable FB has
very poor directional selectivity.

Notation. Uppercase bold face letters and lowercase bold face
letters represent 2 × 2 square matrices and 2 × 1 column vectors,
respectively. For example, h(n) is a function defined on the 2-D in-
teger lattice (n1, n2)

T , and π is (π, π)T . The superscripts T and −T

denote the transpose, transpose of the inverse operators, respectively.
N (M) is defined as the set of integer vectors of the form Mx

where x ∈ [0, 1)2. |M| represents the determinant of the matrix M.
The notation ωM is defined as

ωM ∆
=

�
m11ω1 + m21ω2

m12ω1 + m22ω2

�
, M =

�
m11 m12

m21 m22

�
. (1)

This notation is equivalent to MT ω. For fundamental operations in
multidimensional multirate systems, we refer to [3].

The followings are some special matrices that are used to deci-
mate subband images in the paper:

Q =

�
1 1
1 −1

�
,D2 =

�
2 0
0 2

�
.

2. THE TWO-LEVEL DUAL-TREE FAN FB

In [4], Kingsbury proposed a dual-tree FB structure to implement a
dyadic complex DWT. The dual-tree structure consists of two dyadic
trees to implement two multiresolution decompositions of the same
signal. The filters employed in the two trees are designed in such a
way that the aliasing in one branch in the first tree will be approx-
imately cancelled by the corresponding branch in the second tree.
If only two scaling (or wavelet) coefficients at the same level in the
primal and dual FBs are retained in the synthesis FBs, the whole
multirate system is approximately linear time-invariant. The condi-
tion on the wavelet filters of the two trees to obtain shift-invariant
property is that they are a Hilbert transform pair. The key to this
relation is the half-sample phase delay condition between the two
lowpass filters employed in the tree [4].

The conventional DFB [5] is created by cascading two-channel
FBs in a binary tree. This section discusses how to construct a dual-
tree DFB, whose directional filters have similar relations like the
Hilbert transform relation in the dual-tree DWT. As an initial step, a
dual-tree of two-level fan FB is constructed . A four-band directional
FB is created when one cascades two levels of the same prototype of
fan FB. Let H0(z) and H1(z) be the two fan filters of the prototype
fan FB. The fan filters in the primal DFB in Fig. 1 are given:

H0a(ω) = H00a(ω) = H10a(ω) = H0(ω), (2)

H1a(ω) = H01a(ω) = H11a(ω) = H1(ω). (3)
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Fig. 1. The two-level dual-tree fan FB in: (a) the two-level binary
tree structure, and (b) the equivalent filter support of the dual-tree of
four-channel DFBs.

In Fig. 1(b), the four directional filters Hdk(ω), k = 0, 1, 2, 3
are employed in the primal DFB with overall decimation matrix D2.
These filters can be related to prototype filters H0(ω) and H1(ω)
through the tree structure as

Hd0(ω) = H0(ω)H0(ω
Q), Hd1(ω) = H0(ω)H1(ω

Q),

Hd2(ω) = H1(ω)H0(ω
Q), Hd3(ω) = H1(ω)H1(ω

Q).

The filters on the dual tree are chosen as follow

H0b(ω) = e−jω1H0(ω),H1b(ω) = e−jω2H1(ω), (4)

H00b(ω) = e−jφA(ω)H0(ω), H01b(ω) = e−jφA(ω)H1(ω),(5)

H10b(ω) = e−jφB(ω)H0(ω), H11b(ω) = e−jφB(ω)H1(ω),(6)

where φA(ω) and φB(ω) are phase functions, which will be defined
later.

Theorem 1 Let Ai(z) and Bi(z) be the analysis and the synthe-
sis filters of channel i, (i = 0, 1) of a quincunx PR FB with a
decimation matrix Q. If φ(ω) is a 2π-periodic function satisfying
φ(ω) = φ(ω + π), then the four filters having frequency responses
e−jφ(ω)A0(ω), e−jφ(ω)A1(ω), ejφ(ω)B0(ω) and ejφ(ω)B1(ω) ren-
der another two-channel PR FB.

Proof: see [6].
A direct implication of Theorem 1 is that the filters defined in (5)-
(6) can be the analysis filters of two fan FBs which are PR as long as
φm(ω) = φm(ω+π), m ∈ {A, B}. In this case, the corresponding
synthesis filters are modulated by ejφm(ω). Using (4)-(6), the four
equivalent filters in the dual tree become:

HH
d0(ω) = e−j(ω1+φA(ωQ))Hd0(ω), (7)

HH
d1(ω) = e−j(ω1+φA(ωQ))Hd1(ω), (8)

HH
d2(ω) = e−j(ω2+φB(ωQ))Hd2(ω), (9)

HH
d3(ω) = e−j(ω2+φB(ωQ))Hd3(ω). (10)

The key idea for the construction of the dual-tree of four-channel
DFBs is to choose φA(ω) and φB(ω) so that the equivalent direc-
tional filters of the dual DFB are Hilbert transforms of those of the

primal DFB. Let us choose the 2π-periodic phase function φA(ω)
as follows:

φA(ω) =

� −ω1
2

− ω2
2

+ π
2
, ω1 + ω2 > 0,

−ω1
2

− ω2
2

− π
2
, ω1 + ω2 < 0.

(11)

Fig. 2(a) illustrates the phase function φA(ω) where black and white
represent −π/2 and π/2, respectively.
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Fig. 2. The phase functions φA(ω) and φA(ωQ), black to white
shades correspond to change of values from −π/2 to π/2.

It can be shown that the function φA(ωQ) (see Fig. 2(b)) is a
(π, 2π)T -periodic function, and

φA(ωQ) = φA(ω1 + ω2, ω1 − ω2),

=

� −ω1 + π
2
, 0 < ω1 < π,−π < ω2 < π,

−ω1 − π
2
, −π < ω1 < 0,−π < ω2 < π.

Substituting φA(ωQ) to equations (7) and (8) to evaluate HH
dk(ω),

k = 0, 1, we have yields

HH
dk(ω) =

�
e−jπ/2Hdk(ω), ω1 > 0,

ejπ/2Hdk(ω), ω1 < 0.
(12)

Therefore, the dual filters HH
dk(z) are Hilbert transforms with re-

spect to ω1 of the primal filters Hdk(z) for k = 0, 1.
Similarly, let φB(ω) be defined as

φB(ω) =

� −ω1
2

+ ω2
2

+ π
2
, ω1 − ω2 > 0,

−ω1
2

+ ω2
2

− π
2
, ω1 − ω2 < 0.

(13)

Following analogous derivation, the other two HH
dk(ω) are

HH
dk(ω) =

�
e−jπ/2Hdk(ω), ω2 > 0,

ejπ/2Hdk(ω), ω2 < 0.
(14)

Hence HH
dk(z) are Hilbert transforms with respect to ω2 of Hdk(z)

for k = 2 and 3. We have shown that the four directional filters
of the dual DFB HH

dk(z) are related to those in the primal DFB by
Hilbert transform in ω1 or ω2. Let us consider one pair of filters
Hd3(z) and HH

d3(z). Assuming that Hd3(z) has real coefficients
and zero phase, it can be considered as a sum of two real functions
symmetric through the origin as

Hd3(ω) = P (ω) + P (−ω), (15)

where

P (ω) =

�
Hd3(ω), 0 < ω2,
0, ω2 < 0.

(16)
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Fig. 3. (a) The ideal support regions of filter Hd3(ω), (b) The actual
support of Hd3(ω) by realizable filters and, (c) P (ω) by definition
in (16).

The ideal supports of HH
d3(z) and P (z) are shown in Fig. 3(a),

where black and white colors represent the passband and stopband.
From (14), HH

d3(ω) can be written as

HH
d3(ω) = −jP (ω) + jP (−ω). (17)

Hence P (ω) =
Hd3(ω)+jHH

d3(ω)

2
.

In practice, the ideal support of the directional filter Hd3(z) in Fig. 3(a)
cannot be achieved, and the transition regions between the stopband
and the passband (dotted areas in Fig. 3(b)) must be included. By the
definition of P (z) in (16), its support is illustrated in Fig. 3(c). We
will show later that all but the aliasing components near ω2 = ±π
of P (z) can be cancelled in the two-level dual-tree fan FB.

For the synthesis side, the two synthesis fan filters of the proto-
type fan FB are used in both the primal and dual DFBs, except for
the fan FBs at the second level of the dual DFB, which are modulated
by ejφm(ω). Therefore, according to Theorem 1, both the primal and
dual DFBs are PR. Assume that the synthesis filters have similar ex-
pressions as in (17). Let Fdi(z) and FH

di (z) be the synthesis filters
of the primal and dual DFBs, respectively. We can write

Gd3(ω) = Q(ω) + Q(−ω), (18)

GH
d3(ω) = jQ(ω) − jQ(−ω). (19)

Q(z) is defined as the upper half of the directional filter Fd3(z),
i.e. Q(ω) = Fd3(ω) when ω2 > 0 and Q(ω) = 0 when ω2 < 0.
Let us consider the two-channel FB created by Hd3(z) and HH

d3(z)
at the analysis side and Fd3(z) and FH

d3(z) at the synthesis side
with a decimation matrix D2 as shown in Fig. 4(a). Let X(ω) and
Y (ω) denote the 2-D Fourier transforms of the input and the output
reconstructed by this two-channel FB. Hence

Y (ω) =
1

2|D2|
�

k∈N (DT
2 )

X(ω − 2πD−T
2 k) (20)

�
Hd3(ω − 2πD−T

2 k)Gd3(ω) + HH
d3(ω − 2πD−T

2 k)GH
d3(ω)

�
,

where N (DT
2 ) =

�
(0, 0)T , (0, 1)T , (1, 0)T , (1, 1)T

�
. Define the

four transfer functions Tk(ω) as follows:

Tk(ω) = Hd3(ω−2πD−T
2 k)Gd3(ω)+HH

d3(ω−2πD−T
2 k)GH

d3(ω).

Except for when k = (0, 0)T , Tk are called aliasing transfer func-
tions. The structure is shift-invariant if the aliasing transfer functions
are zero. Since D−T

2 = 0.5I , the aliasing transfer function associ-
ated with k is

Tk(ω) = Hd3(ω − πk)Gd3(ω) + HH
d3(ω − πk)GH

d3(ω),

=(P (ω − πk) + P (−ω − πk)) (Q(ω) + Q(−ω)) +

+ (−jP (ω − πk) + jP (−ω − πk)) (jQ(ω) − jQ(−ω)) ,

=2P (ω − πk)Q(ω) + 2P (−ω − πk)Q(−ω). (21)

Note that Q(z) has the same passband and stopband as those of
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Fig. 4. (a) Subband 3 of the two-channel dual-tree fan FB consid-
ered separately from the tree. (b) The frequency supports of the
significant aliasing transfer function in (21), which corresponds to
k = (1, 0)T . The frequency support of P (ω−πk): (c) k = (1, 0)T ,
(d) k = (0, 1)T , and (e) k = (1, 1)T .

P (z) depicted in Fig. 3(c). It is evident that the aliasing is signif-
icant only if Q(ω) and P (ω − πk) have overlapping transition or
passband regions. Therefore, it can be concluded from the supports
of P (ω−πk) in Figs. 4(c), (d) and (e) that Tk(ω) with k = (1, 0)T

is the only significant aliasing transfer function. The frequency sup-
ports of this transfer function are the dotted regions in Fig. 4(b). In
order to have a translation invariant image transform, a pyramidal
decomposition is used to remove the frequency components in these
regions before applying the signal to the dual-tree DFB.

3. THE COMPLEX DIRECTIONAL PYRAMID

In order to construct a shift-invariant multiscale and multidirectional
decomposition, a combination of a multiresolution FB with the dual-
tree DFB at every highpass resolution is proposed. The multiscale
FB consists of an undecimated two-channel FB and an iterated Lapla-
cian pyramid. Consider the construction in Fig. 5. At the front end,
an undecimated two-channel FB (L0(ω) and R(ω)) is used to sep-
arate the high frequency components near (π, .) and (., π), which
potentially cause aliasing in the dual-tree (see Fig. 4(b)). The high-
pass filter R(ω) produces a ‘residual’ image similar to that in the
steerable pyramid [2]. It is clear that, for this undecimated FB to be
PR, the filters must satisfy

|R(ω)|2 + |L0(ω)|2 = 1. (22)

The output of the wide-band lowpass filter L0(ω) is then fed into
the first stage of the Laplacian pyramid where the signal is divided
into two parts: the coarse approximation (point L in Fig. 5(a)) and
high frequency component (point H in Fig. 5(a)). This high fre-
quency component is then further decomposed by a dual-tree of DFB
to produce the real and imaginary value of 2n complex directional
subbands.
The aliasing effect of the pyramidal DFB is analyzed in [7] by view-
ing it as an overcomplete FB. The aliasing effect of the conventional
DFB and the Laplacian pyramid to the equivalent directional filters
is considered, and the condition to reduce this effect is that the two
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Fig. 5. A shift-invariant pyramid: (a) Analysis side, and (b) Synthesis side. Similar P and Q blocks can be reiterated at lower scale to
decompose an image into a multiscale representation.

Laplacian filters (G1(ω) and G2(ω) in Fig. 5) should satisfy the
Nyquist criterion. This condition means that the frequency responses
of the two filters should have the passband regions (including the
transition bands) strictly limited in [−π/2, π/2]2. The G1(ω) and
G2(ω) in this paper satisfy this designed constraint. Consequently,
there is no aliasing in the coarse approximation (L) and its spectrum
near π is negligible, and therefore minimizes the potential aliasing
from the dual-tree DFB in the second level of the pyramid. Since the
Laplacian pyramid used in the structure is shown to provide subband
images with no aliasing, it is called a shift-invariant Laplacian pyra-
mid.
The dual-tree PDFB of the directional complex pyramid is a shift-
invariant Laplacian pyramid cascaded with a dual-tree of 2n-channel
DFBs at each high resolution level of the pyramid. The first resolu-
tion is illustrated in Fig. 5. The block P and Q are iterated to provide
a multiscale decomposition and synthesis.

The dual-tree of 2n-channel DFBs is constructed by cascading
two similar two-channel FBs into every corresponding branches of
the two DFBs in the dual-tree 2n−1-channel DFBs. The frequency
supports of these two-channel FBs and implementation method are
similar to those of the conventional DFB in [5]. By this construction,
the resulting directional filters in the primal and dual DFBs satisfy
the same condition in (12) or (14). Therefore, the equivalent direc-
tional filters at all directions in the dual DFB are always the Hilbert
transforms of the corresponding filters in the primal DFB in ω1 or
ω2. It is shown in the previous section that some of the aliasing
components in the dual-tree four-band DFB are cancelled out. That
discussion on aliasing cancellation between the dual and primal sub-
bands can be directly extended to the directional subbands of the
dual-tree DFB with 2n subbands. Furthermore, the frequency com-
ponents at the aliasing region in Figure 4(b) are already removed by
the multiscale Laplacian pyramid before the dual-tree DFB. There-
fore, the overall FB is shift-invariant.

An implementation of the dual-tree PDFB and its shift-invariance
performance can be found in [6]. The frequency responses of one
corresponding directional filter in the primal DFB, dual DFB, and
complex DFB are illustrated in Fig 6. If the impulse responses of the
primal and dual directional filters are denoted as hP (n) and hD(n),
then the complex filter is determined by hC(n) = 0.5(hP (n) +
jhD(n)).

4. CONCLUSION

A novel shift-invariant multiscale multidirectional image transform
implemented by the dual-tree PDFB is presented in this work. The
image decomposition offered by the FB has many of the desire prop-
erties for image analysis. It is multiscale, multidirectional and nearly

(a) (b) (c)

Fig. 6. The frequency response of equivalent directional filters of a
dual-tree PDFB implementation in [6]. (a) A directional filter of the
primal PDFB,(b) The corresponding filter of the dual PDFB, and (c)
The complex filter.

shift-invariant, and has very low overcomplete ratio. The number of
directional subbands in the proposed FB can be increased adaptively
depending on image features without increasing the redundancy of
the representation. Furthermore, the decomposition provides phase
information on the image feature, which can be very useful in sev-
eral image processing tasks, such as motion estimation or edge de-
tection. Last but not least, the whole framework can be efficiently
implemented by separable filters as described in [6].
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