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ABSTRACT
In this work, we propose a new model based on stochastic geome-

try for extracting features from images. This type of model allows

the incorporation of a prior knowledge on the interactions between

features within the extraction process. We focus on the specific prob-

lem of automatic building extraction from Digital Elevation Models

(DEMs). The model we propose is based on two interacting spatial

point processes, the former being a process of rectangles, the lat-

ter a process of segments. An energy associated with the resulting

process is defined. This energy consists in five main parts. We first

define two energy data terms to make the rectangles fit the homo-

geneous areas and the segments fit meaningful discontinuities. Two

prior terms favoring respectively the alignment of rectangles and the

connection of segments are incorporated. The last part of the energy

is an interaction term that makes the two types of objects cooper-

ate. We present results on real data provided by the IGN (French

Geographic Institute).

1. INTRODUCTION

The automatic reconstruction of precise 3D maps of towns is an im-

portant but still open issue and remotely sensed high resolution data

seem to be the natural type of data to employ for automatic urban

reconstruction. However, high resolution data exhibit major issues.

The preciseness of such data requires considering an image as a set

of objects rather than a set of pixels. As a consequence, most of the

methods developed for the automatic analysis of dense urban area

are based on top-down procedures. These automatic methods are

mostly made up of three steps: focus on an area of interest, low

level primitive extraction and building reconstruction through prim-

itive agglomeration. Defining automatic methods to extract relevant

primitives is still an open issue. Some recent developments can be

found in [1], [2] or [3]. In [4] we propose an automatic method based

on stochastic geometry that proved to work well in dense urban ar-

eas. It extracts simple shapes of buildings (rectangles) from different

kinds of DEMs (optical or laser). DEMs are raster data giving the

altimetry of a scene: each pixel value stands for the height of the

corresponding point. Such data can be obtained using stereovision

techniques or laser sensors and usually exhibit a tremendous com-

plexity.

What makes the approach we present in [4] robust to the type

of data employed, is the kind of prior used. Modeling an image as

a realization of a spatial point process of geometrical shapes allows
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the inclusion of a prior model on the patterns of features in the scene,

in terms of geometrical interactions between the objects. In [4] we

present a model based on rectangles. In particular, the data term

consists of a discontinuity detector. In order to be able to deal with

cruder data, we propose to increase the role of the spatial regulariz-

ing term. We propose to employ a method that allows the fusion of

the discontinuity information with a homogeneity term. As a con-

sequence, we consider the fusion of a process of segments together

with a process of rectangles to take profit from both types of infor-

mation. Note that details on the approach we present here can be

found in [5].

2. SPATIAL POINT PROCESS MODELS

Let describe an image as the compact set K = [0, Xmax]×[0, Ymax].
An element of K is therefore a two dimensional point. A point pro-
cess X on K is a measurable mapping from an abstract probability

space (Ω,A, P) to the set of finite configurations of points of K:

∀ω ∈ Ω X(ω) = {x1, . . . , xn} xi ∈ K.

A point process thereby describes random configurations of points.

Point processes have been introduced in image processing by A.

Baddeley and M.N.M. van Lieshout in [6] because they easily allow

modeling scenes as a random set of geometrical shapes. This notion

of shape is brought by the addition of marks (parameters) to each

point. For instance, considering a point process on Sr = K × Mr

with Mr =] − π
2
, π

2
] × [Lmin, Lmax] × [lmin, lmax] can be seen

as random configurations of rectangles since to a location in K it

adds an orientation θ, a length L and a width l. Let denote Cr the

set of all finite configurations of rectangles. In a similar way, taking

Ms =] − π
2
, π

2
] × [L′

min, L′
max] permits the description of random

configurations of segments. Considering a point process X of rect-

angles and a point process Y of segments, we consider the following

point process Z on Sr ∪ Ss:

Z(ω) = X(ω) ∪ Y(ω).

What makes spatial point process models attractive for image

processing applications is the possibility of defining probability dis-
tributions through a probability density function, the distribution of a

reference Poisson point process playing the analog role of Lebesgue

measure for random variables on R. Let consider the distribution

µ(.) of a reference Poisson point process and a measurable map-

ping h(.) from the space of configuration of points C to positive

reals [0,∞( such that Znorm =
R
C

h(z)dµ(z) < ∞. Considering a

point process Z defined by such an unnormalized density h(.), and

a reference measure µ(.), it is possible to build a Markov chain that
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converges ergodically to the distribution of Z (see [7]). This sampler

is incorporated within a simulated annealing framework which gives

a global maximum of the density h(.) as detailed in [8]. Thus, the

corresponding estimator is given by ẑ = Argmax h(.) (see [5] for

details).

2.1. General form of the energy

Writing the unnormalized density h(.) under its energetic form UZz) =
−log(h(z)), we define a model that can be decomposed as follows:

UZ(z) = ρUext(z) + Uint(z) + Uexcl(z) (1)

= ρ
X

u∈z

Ud(u) + Uint(z) + Uexcl(z), (2)

where Uint(z) stands for an internal energy giving a spatial struc-

ture to the configuration z; Uext(z) is the external field quantifying

the quality of a configuration with respect to the data and can be de-

composed as a sum of energies per object Ud(.) while Uexcl is an

exclusion term to avoid too many superpositions of objects and is

tuned such that U(z ∪ u ∪ u) > U(z ∪ u) for all (u, z) ∈ S × C.

3. POINT PROCESS OF RECTANGLES AND BUILDINGS

We use random configurations of rectangles to describe cities. Rect-

angles are indeed a natural pattern to be detected in dense urban

areas. We present here a model to extract rectangular homogeneous

areas (full details can be obtained in [5]).

3.1. Data term

The purposes underlying the definition of the data term Ud(.), map-

ping from S to R, are first to decide what an “attractive object”

(Ud(u) ≤ 0) is, and second, to introduce a potential such that mini-

mizing Ud(u) locally gives the closest attractive object.

Fig. 1. The rectangle data term makes rectangles fit homogenous

and extruded areas.

In order to detect rectangular homogeneous area, we use a grid

of points for each rectangle (see Figure 1) and we compute different

values, that describe “how homogeneous” the distribution of grey

levels inside the rectangle is, and whether the inside points are higher

than the outside points. In [5] we define several functions to quantify

these two notions, resulting in a reward function jrect : u → [0, 1]
maximal for rectangles fitting well homogenous areas. We then de-

fine γr
1 the set of rectangles u ∈ Sr such that the inside gray levels

are homogeneous enough. We call this set of rectangles the set of

“attractive rectangles” and note γr
0 the complementary set of “repul-

sive rectangles”. This appellation “attractive” and “repulsive” comes

from the data energy term we adopt

Ud(u) = −jrect(u) ∗ 1(u ∈ γ
r
1) + 0.1 ∗ (2− jrect(u))1(u ∈ γ

r
0),

C
C

CC

1
2

3 4

1

Fig. 2. Attractive interactions.

Fig. 3. Sample of the internal field of the process of rectangles.

which favors elements of γr
1 , penalizes others and orders rectangles

using the function jrect.

3.2. Internal field

The prior model can be seen as a regularizing term. In our frame-

work, the prior model is essentially composed of geometrical in-

teractions between objects. We implemented an internal field that

favors alignments between detected structures as well as a paving

behavior. Details on how the internal field is defined can be found

in [5]. Figure 2 presents the two types of interaction that are defined

using conditions on the respective angle between two close rectan-

gles and the distance between appropriate corners. An exclusion

term that avoids redundant objects is needed to avoid redundant ex-

planations of the data and insure that the attractive interactions do

not make the set of particles collapse to an infinite accumulation of

points. Furthermore, a condition used to prove the convergence of

the algorithm (see [7]) requires the variation of the energy induced

by adding a point to a given configuration, to be bounded. We thus

use the simplest possible exclusion interaction and strongly penalize

intersections between rectangles. We present on Figure 3 a sample

of the process of rectangles considering only the prior term (ρ=0).

4. POINT PROCESS OF SEGMENTS AND
DISCONTINUITIES

We introduce a point process of segments, aiming at detecting dis-

continuities. The general energy follows the pattern described by

equation 2. Details can be found in [5].

4.1. Data term

We use the approach we introduced in [4]. As described by Fig-

ure 4, we consider for each segment some profiles and a low level

filter that allows to detect significant discontinuities on each profile

(see [5]). Using such a filter permits dealing with different types of

data. Similarly to the case of rectangles, we define a reward func-

tion jseg : v → [0, 1] that is maximal for segments fitting detected
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Fig. 4. The segment data term makes segments fit discontinuities

detected using a set of profiles and a low level filter.

discontinuities well. We also divide the set of segments into two

subsets: the set of interesting segments and its complementary (see

[5]).

4.2. Internal field

The goal is to favor continuous networks. We thus introduce a con-

nection interaction. We actually consider two kinds of connections,

the first one favoring alignments between segments, the second one

favoring orthogonality between them as illustrated by figure 5. The

exclusion term penalizes overlapping segments. Figure 6 presents a

sample of the prior term (ρ = 0).

Fig. 5. Attractive interactions for segments. Left : connection in the

alignment, right : connection with orthogonality

Fig. 6. Sample of the prior term acting on the process of segments

5. INTERACTION BETWEEN SEGMENTS AND
RECTANGLES

We add a cooperation term between segments and rectangles. We

define the following energy associated to the process Z, which con-

sists of a superposition of segments and rectangles:

UZ(z) = UX(x) + UY (y) + ρinterUXY (x,y).

The interaction term UXY involves attractive interactions between

segments and rectangles like those presented in figure 7. The goal is

to make the information given by rectangles and segments complete

each other, by favoring configurations where segment and rectangle

dispositions are consistent. The final energy term involves a set of

d

δθ

δ

Fig. 7. Attractive interactions between segments and rectangles.

real parameters that allows tuning the influence of each interaction.

The probability density function actually belongs to a general expo-

nential family, see [5] for details.

6. ALGORITHM

A simulated annealing is performed on the density of the defined

point process Z. The simulated annealing allows to find the config-

uration of segments and rectangles minimizing the energy. We use a

RJMCMC (Reversible Jump Markov Chain Monte Carlo) sampler,

derived from the work of C. Geyer and J. Møller in [9] and P.J. Green

in [10]. The algorithm is detailed in [4, 5, 7].

6.1. Algorithm

We consider a point process Z defined by its energy U(.). Through

the Gibbs relation, this energy defines a density h known up to a

normalizing constant which, together with the distribution µ(.) of

the reference Poisson point process defines the distribution π(.) of

Z. A Markov chain (Xt)t≥0 is defined by a starting point X0 = {∅}
and a Markovian transition kernel P (z, .) which is designed in order

to make the Markov Chain converge towards the desired distribution,

i.e. such that ‖P n({∅}, .)−π(.)‖TV → 0 where ‖.‖TV denotes the

Total Variation norm (TV). The algorithm is based on a mixture of

perturbation kernels Q(., .) =
P

m
pmQm(., .) where

P
pm = 1

and
R

Qm(z, z′)µ(dz′) = 1. The algorithm iterates the following

steps, if the current state Xt is Xt = z = {z1, . . . , zn}:

1. Choose one of the proposition kernels Qm(., .) with probability

pm(z) and sample z′ according to the chosen kernel z′ ∼ Qm(z, .).

2. Compute the Green ratio Rm(z, z′), function of the selected ker-

nel Qm, the original state z and the proposed new state z′. The ratio

Rm is derived to make the Markov chain converge towards the de-

sired distribution.

3. The proposition is accepted Xt+1 = z′ with a probability αm(z, z′)
= min(Rm(z, z′), 1) and rejected otherwise Xt+1 = z.

6.2. Perturbation kernels

The efficiency of the algorithm highly depends on the variety of pos-

sible transformations Qm(z, .). We use different types of moves,

including birth or death of an object, translation, rotation, dilation
of a randomly selected object, as well as transformations acting on

interaction pairs of objects (see [5] for details). With each of these

transformations is associated a Green ratio Rm that insures the con-

vergence of the Markov Chain towards the desired distribution.
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Fig. 8. Results on real data. From left to right: original DEM of the French town of Amiens provided by the French Geographic Institute

( c©IGN), segment extraction and rectangle extraction results. Additional results are described in [5].

6.3. Simulated annealing

To find a minimizer of the energy U(.) we use a simulated anneal-

ing framework. Instead of generating samples of h(.), we simulate

h
1

Tt (.). The temperature parameter Tt tends to zero as t tends to ∞.

This technique has been widely used in image processing (see [11]

for instance). If Tt decreases with a logarithmic rate, then Xt tends

to one of the global maximizers of h(.). Of course, in practice it is

not possible to use a logarithmic cooling schedule and we eventu-

ally use a geometrical one. This last point makes the quality of the

proposition kernels an important issue.

7. RESULTS

Figure 8 presents a result on real data obtained in 6 hours for an

image of size 1000 by 1000, using using a 3 Ghz Pentium 4 machine.

Additional results on different types of data and an extended area

can be found in [5], showing that the approach is powerful on data

of various kinds.

8. CONCLUSION

This work extends our previous work on the use of stochastic geom-

etry for image feature extraction. We show that combining different

objects is powerful and allows dealing with complex real data.

Future work should involve the introduction of more primitives

(e.g. corners, roof edges, etc...). However two major issues need to

be solved in order to fully exploit this kind of models. First, the

learning of parameters should be carefully examined, even if the

prior model parameters proved to be very robust in practice. Sec-

ond, the algorithm employed is very slow. There is a huge need for

proposing new algorithms to speed up the computation.
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