
SOURCE ADAPTATION FOR IMPROVED CONTENT-BASED VIDEO RETRIEVAL

Arnab Ghoshal and Sanjeev Khudanpur

Center for Language and Speech Processing
Johns Hopkins University, Baltimore, MD, USA

ABSTRACT
Adaptation of hidden Markov model (HMM) parameters to individ-

ual speakers is known to provide considerable improvements over

speaker-independent speech recognition systems. This paper applies

this idea of model adaptation to a content-based video retrieval sys-

tem that uses HMMs, with different sources of video treated analo-

gously to different speakers. Source-independent HMMs are adapted

to each video-source using the maximum a posteriori probability

(MAP) and maximum likelihood linear regression (MLLR) tech-

niques. It is shown that MLLR is not effective in modeling source

variability in video, while MAP is highly effective. An overall im-

provement of 39% is demonstrated in video retrieval performance on

the TRECVID 2005 benchmark test over a competitive baseline sys-

tem via source-adaptation and improved use of the HMM likelihoods

in retrieval.

1. INTRODUCTION

The content of communications in the digital age is increasingly

multi-modal in nature, with text, images and even speech or video

being used in a single “document.” Content-based indexing and re-

trieval of multimedia is therefore becoming an increasingly impor-

tant issue. Unlike text retrieval, where the modality in which the

user usually specifies her information need is the same as the modal-

ity of the search collection, there is relatively little work in image

and video retrieval based on textual queries. Important progress has

been made in the last few years in content-based image retrieval, as

reported by Duygulu et al [1], Blei et al [2], Jeon et al [3] and others.

While the classical image understanding problem, i.e. the prob-

lem of recognizing all the objects in a given image, is very difficult

due to several invariance issues, an aspect of the image and video in-

dexing and retrieval problem that makes it relatively more tractable

is the availability of side information: images in multimedia docu-

ments are often accompanied by descriptive text that a model may

use to infer the content of an image, and video is often accompa-

nied by speech. With this consideration, we [4] have recently devel-

oped a joint stochastic model, specifically a hidden Markov model

(HMM), for images and their accompanying captions. HMM param-

eters are estimated from a manually annotated (training) collection

of image+caption pairs; the caption-words are from a large but fixed

vocabulary of objects or concepts.

In this paper, we report two significant improvements to the

model of [4]. In particular, we study the adaptation of HMM param-

eters to different video sources, and a concept-specific variation of

the model in which, for each concept in the vocabulary, we train one

HMM on all the images containing the concept and another HMM

on all images not containing the concept. For each test image, pres-

ence or absence of a concept is determined by a likelihood ratio test
under these two models. We also study the adaptation of the concept-

specific models to individual video sources.

This paper is organized as follows. Section 2 formally describes

the two types of HMMs used for image annotation. Section 3 de-

scribes HMM adaptation techniques. Section 4 presents a series of

experimental results on the NIST TRECVID 2005 data-set, followed

by a discussion in Section 5.

2. HMMS FOR IMAGE ANNOTATION

Let a collection L ≡ {(I, C)} of image+caption pairs be given.

Let I ≡ {i1, . . . , iT } denote image-segments (image-regions), and

C ≡ {c1, . . . , cN} the objects (concepts) present in that image, as

specified by the label (caption). The T image-regions may be object-

based, with each region corresponding to one semantically distinct

object, or they may be a simple rectangular partition of the image

into fixed-size blocks. For each image-region it, t = 1, . . . , T , let

xt ∈ R
d represent color, texture, edges, shape and other salient vi-

sual features of the region. Let V denote the total vocabulary of the

caption-words cn across the entire collection of images.

We propose to model the visual features {x1, . . . , xT } as a hid-

den Markov process, generated by an unobserved underlying Markov

chain {st} with a known initial state s0 and transition probabilities

p(st|st−1). We model the output density for each state s as a mix-

ture of multivariate Gaussian densities on R
d:

f(x|s) =

MX

m=1

wm,s
e−

1
2 (x−µm,s)T Σ−1

m,s(x−µm,s)

p
(2π)d|Σm,s|

, (1)

where wm,s is the mixture weight, µm,s the mean-vector and Σm,s

the diagonal covariance-matrix of the m-th mixture component of

state s.

The joint likelihood of a state sequence sT
1 ≡ {s1, . . . , sT } and

features xT
1 ≡ {x1, . . . , xT } is

f(xT
1 , sT

1 |s0) =
TY

t=1

f(xt|st) p(st|st−1). (2)

The model proposed in [4] associates one state s with each word in

the concept vocabulary V , as summarized in Section 2.1, formalizing

the notion that each image region is a stochastic realization of one of

the concepts present in the image. We propose an alternative model

in Section 2.2, where the states have no such semantic interpretation,

but instead model spatial locality of the visual features.

2.1. A Joint Model of Visual Features and Captions

In the joint model, the states {st} of the underlying Markov chain for

an image I take values in C, its caption. A label (or concept) c ∈ V
appearing in two different images is modeled by the same state, and

the HMMs for all images “share” states from a common pool of |V|
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tied states. For an image+caption pair (I, C), sT
1 ≡ {s1, . . . , sT } ∈

CT , with C ⊂ V .

Note that knowing the state sequence {st} is equivalent to hav-

ing the alignment of each image-region it with one of the words in

the caption. Even though this level of detail is generally not pro-

vided in captions, an HMM readily provides the joint likelihood of

an image+caption pair (I, C) ≡ (xT
1 , C) via the forward-algorithm.

f(xT
1 , C|s0) =

X

sT
1 ∈CT

TY

t=1

f(xt|st) p(st|st−1). (3)

Furthermore, given a training collection of image+caption pairs, emis-
sion densities f(x|c) and transition probabilities p(c′|c) of the HMM

may be estimated to maximize the likelihood (3) of the training pairs.

Details of this maximum likelihood estimation procedure are stan-

dard and therefore omitted (cf [5]).

For indexing a new image I , the HMM provides the conditional

probability, given all the visual evidence xT
1 in I , that an image-

region it was generated by a concept c ∈ V , as

p(st = c|xT
1 , s0) =

f(xT
1 , st = c|s0)

f(xT
1 |s0)

(4)

=

P
sT
1 :st=c

QT
t=1 f(xt|st)p(st|st−1)

P
sT
1 ∈VT

QT
t=1 f(xt|st)p(st|st−1)

.

Therefore, the probability of a particular concept c ∈ V being present

(somewhere) in an image may be calculated as

p(c|I, s0) =
1

T

TX

t=1

p(st = c|xT
1 , s0). (5)

Unlabeled images in a test collection {I} may therefore be ranked

for the presence of any particular concept c based on this posterior

probability. In other words, the relevance score assigned to an image

I for a query c is

score(I, c) = p(c|I, s0). (6)

See [4] for details of this model and its retrieval performance.

2.2. Concept-Specific Image Models

Image retrieval for a text query c is essentially the task of deciding,

for each image I , whether or not it contains the concept c. This mo-

tivates the following concept-specific model, in which one pair of

HMMs is estimated for each concept: an HMM H+
c from all im-

ages that contain the concept c, and an H−
c from all images that do

not contain the concept. Both H+
c and H−

c have simple left-to-right

topologies, with as many states as there are rectangular image re-

gions, as shown in Figure 1. Formally, the state space of both H+
c

and H−
c is S = {1, . . . , T}, and unlike the preceding joint model,

these states do not have any interpretation in terms of the concept

vocabulary V and instead simply model spatial properties of the im-

ages.

With H generically denoting either H+
c or H−

c for some concept

c, the marginal likelihood of an image I under H is

f(I|H) ≡ f(xT
1 |H, s0) =

X

sT
1 ∈ST

TY

t=1

fH(xt|st)pH(st|st−1).

Fig. 1. HMM Topology for the Concept-Specific Models.

The parameters fH+
c
(·|s) and pH+

c
(s′|s) of each H+

c are chosen to

maximize the likelihood of images containing c:

H+
c = arg max

H

Y

Il : c∈Cl

f(Il|H), (7)

where L ≡ {(I1, C1), . . . , (IL, CL)} denotes the training set. Sim-

ilarly the parameters of each H−
c are estimated to maximize the like-

lihood of images not containing c. Note that this is just maximum

likelihood estimation, albeit carried out using a different partition of

L for every pair of HMMs in the family
˘H+

c ,H−
c , c ∈ V¯

.

For an unlabeled image collection {I}, we calculate the likeli-

hoods f(I|H+
c ) and f(I|H−

c ) for each concept c, and then rank-

order the images according to the likelihood ratio

score(I, c) =
f(I|H+

c )

f(I|H−
c )

=
f(xT

1 |H+
c , s0)

f(xT
1 |H−

c , s0)
. (8)

In practice, we have found that the Viterbi approximation

score(I, c) ≈
maxsT

1

QT
t=1 fH+

c
(xt|st) pH+

c
(st|st−1)

maxsT
1

QT
t=1 fH−

c
(xt|st) pH−

c
(st|st−1)

results in nearly identical retrieval performance.

3. ADAPTING TO INDIVIDUAL VIDEO SOURCES

Speaker-dependent (SD) automatic speech recognition systems per-

form much better than speaker-independent (SI) systems [6]. How-

ever, training an SD system is often impractical, since it requires

obtaining a large amount of speaker specific training data. Speaker

adaptation provides a convenient way to “tune” a SI system to in-

dividual speakers with comparatively little data from each speaker.

Model adaptation techniques, where the parameters of a SI system

are adjusted to better match individual speakers, may be broadly

classified into Bayesian approaches [6, 7] and transformation based

approaches [8, 9]. The adaptation is said to be supervised or unsu-

pervised, depending on whether a manual transcription of the speech

is provided or not.

Inspired by these results, we investigate supervised adaptation

for HMM-based image retrieval. We treat each video-source as a

different speaker, and adapt a source-independent (SI) HMM system

to perform source-dependent (SD) retrieval.
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3.1. Adaptive Transforms (MLLR)

The maximum likelihood linear regression (MLLR) approach adapts

the parameters of an SI system by applying an affine transform [9].

Often, only the Gaussian means of the SI system are transformed:

the mean vectors µm,s of each mixture component m of every state

s are replaced, respectively, with

µ̂(k)
m,s = A(k)µm,s + b(k), (9)

where the SD transform-parameters [A(k), b(k)] are estimated sepa-

rately for each video source k = 1, . . . , K , to maximize the likeli-

hood of the source-specific training data. The estimation procedure

is well known [8].

3.2. Bayesian Adaptation (MAP)

A Bayesian approach to source-adaptation is to consider the SD

mean vectors µ
(k)
m,s for a source k to themselves be random vectors

and, given some source-specific training data, to compute the values

of the SD means with the maximum a posteriori probability (MAP)

[6]. In particular, if we assume a priori that µ
(k)
m,s is Gaussian with

mean equal to its SI value µ̂m,s, and variance τ−2, then the MAP

estimate of µ
(k)
m,s given some source-specific data is

µ̂(k)
m,s =

PT
t=1 γm,s(t)x

(k)
t + τ µ̂m,sPT

t=1 γm,s(t) + τ
, (10)

where γm,s(t) is the posterior probability under the SI HMM that

x
(k)
t , the t-th image feature of video-source k, was “emitted” by

mixture component m of state s. Setting τ = 0 results in maximum

likelihood estimation of the SD means from only the source-specific

data, which may result in over-fitting. τ is chosen empirically to

temper this effect [7].

4. EXPERIMENTAL RESULTS

The NIST TRECVID 2005 benchmark test provides an evaluation

forum for video retrieval from text queries. About 170 hours of

broadcast quality news videos from 13 different programs in En-

glish, Arabic and Mandarin are provided, along with shot bound-

aries. For a detailed description of the TRECVID 2005 data-set refer

to: http://www-nlpir.nist.gov/projects/tv2005/tv2005.html. The data-

set also provides one or more keyframes for each shot, resulting

in about 152K keyframes. These are divided into a 74K-keyframe

development (DEV) set and 78K-keyframe evaluation (EVAL) set.

The high-level feature detection task is to detect the presence or

absence of 10 predetermined benchmark concepts (high-level fea-

tures) in each shot of the EVAL partition. Using each of the 10 con-

cepts as single-word queries, systems are required to return ranked-

lists of up to 2000 shots, and system performance is measured via

non-interpolated mean average precision (mAP), a standard met-

ric for document retrieval. For more information, see the TREC-10

Proceedings appendix on common evaluation measures, available at

http://trec.nist.gov/pubs/trec10/appendices/measures.pdf.
Each keyframe in DEV is manually marked for the presence or

absence of each of the 10 benchmark concepts, as well as 29 other

concepts. For each keyframe I , we create a caption C by noting

the concepts present in it. Therefore, |V| = 39, and since many

keyframes do not contain any of the 39 concepts, C = φ for about

29% of the (I, C) pairs. We further divide DEV into a training

(TRN) set L of 57K keyframe+caption pairs, and a check (CHK)

set of 17K.

Though the high-level feature detection task permits analysis of

entire shots before retrieval, the techniques described in Section 2

currently handle only still images. In particular, the scores of (6)

and (8) are used to rank-order the keyframes of CHK or EVAL in

response to queries c. Since the task requires ranking entire shots in

response to each query, and some shots contain multiple keyframes,

we derive a ranked-list of shots from the ranked-list of keyframes

by a simple scheme — the rank of a shot is the harmonic mean of

the ranks of its keyframes. This scheme could clearly be improved

upon, but it does not affect the main results of this paper.

Visual features xT
1 were extracted for each keyframe using a

5×7 rectangular partition, and provided to us by Giridharan Iyengar

of IBM. The 80-dim features capture color moments, oriented-edges,

and texture in each sub-image [10].

4.1. Adaptation Results for the Baseline HMM System

We first train the HMM of Section 2.1 on all (I, C) pairs with C �= φ
from all 13 video sources in TRN. For each of the 39 concepts c, we

then rank all the keyframes I in CHK according to (6). This HMM,

with M = 100 Gaussian densities per mixture, was shown in [4] to

be comparable to the state of the art on the TRECVID 2003 bench-

mark test, and the mAP of this system over 39 concepts on CHK

forms the baseline for subsequent experiments. The mAP of this

system on EVAL for the 10 benchmark concepts is also the baseline

for the final comparison in Section 5.

We next perform 3-4 iterations of supervised adaptation of the SI

HMM, either MLLR or MAP, for each of the 13 sources, and again

measure video retrieval performance on CHK. The resulting mAP

for all 39 concepts, and for the subset of 10 benchmark concepts, is

reported in Table 1.

System Baseline MLLR MAP

mAP (39) 0.230 0.231 0.243
p-value — 0.46 0.0001

mAP (10) 0.185 0.186 0.196
p-value — 0.42 0.0213

Table 1. Improvements in mAP of ranked-retrieval of all shots in the

CHK set, and their statistical significance, due to source-adaptation

of the HMMs of [4].

Note that significant improvements are obtained by MAP adap-

tation, but almost none by MLLR. We conclude that MLLR, while

effective for channel compensation in speech recognition, is not ap-

propriate for capturing source-specific image-variability.

4.2. Adapting the Concept-Specific Image Models

We next train the HMMs of Section 2.2 on all (I, C) pairs with

C �= φ from all 13 video sources in TRN. The HMM H+
c is trained

on images from TRN containing the concept c, and H−
c on images

not containing c. We study two alternatives for initializing the itera-

tive estimation of the HMMs. One is to follow the usual “flat-start”

recipe (cf [11]), and the other is to first fully train up a background
HMM H using all the images in TRN, and use it to initialize H+

c

and H−
c . Since there are fewer training images, particularly for H+

c ,

the HMMs in this section have M = 10 to 20 Gaussian densities per

mixture.
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We then perform 3-4 iterations of supervised adaptation of the

SI HMMs, either MLLR or MAP, for each of the 13 sources, and

again measure video retrieval performance on CHK. The resulting

mAP is reported in Table 2.

Initialization Flat-start Background

System SI MLLR MAP SI MAP

mAP (39) 0.282 0.284 0.295 0.296 0.304
p-value — 0.19 0.0001 — 0.001

mAP (10) 0.209 0.214 0.228 0.227 0.242
p-value — 0.24 0.01 — 0.01

Table 2. The mAP of ranked-retrieval of all shots in the CHK set

following source adaptation of concept-specific HMMs.

Note, first, that the concept-specific HMMs significantly outper-

form the HMM of Section 4.1. Furthermore, the trend of MLLR not

being beneficial and MAP providing further significant gains contin-

ues to hold for the “flat-start” training of HMMs. For this reason,

we did not perform MLLR for the “background” initialized HMMs.

The MAP adapted, “background”-initialized HMMs is dramatically

better than the baseline. The mAP of 0.242 is also significantly bet-

ter than the system of [10], which attains an mAP of 0.197 on this

training-and-test configuration.

4.3. Results on the TRECVID 2005 Task

To further confirm these advances, we evaluated the baseline system

of Section 4.1 and the best model of Table 2 on the EVAL partition,

and the mAP for the 10 benchmark concepts in Table 3 indicates an

overall improvement of 39% over the HMM system of [4].

System Baseline “background”+MAP

mAP (10) 0.137 0.225

Table 3. Performance of the baseline of Section 4.1 and the best

of Section 4.2 measured on the top 2000 retrieved shots from the

TRECVID 2005 benchmark test.

We also remark that the system [10], trained on the entire DEV

data obtains an mAP of 0.198 on the TRECVID 2005 task, while

the “background”+MAP system obtains a significantly higher mAP

even when trained on only the TRN portion of DEV.

5. CONCLUDING REMARKS

We have demonstrated remarkable improvement in retrieval of video

from text queries using HMMs within the context of the TRECVID

2005 task. In particular, we have shown that both source-adaptation

and use of likelihood ratios instead of likelihoods in ranking frames

or shots yield significant improvements in video retrieval perfor-

mance. This coupled with the computational efficiency of HMMs

makes them highly suitable for large-scale image and video retrieval.

We are investigating discriminative techniques for estimating the

joint video-text HMM so that the benefits of joint modeling as well

as likelihood-ratio based ranking are obtained in a unified model.
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