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ABSTRACT

Linear Discriminant Analysis (LDA) has been widely applied in 

the field of face classification because of its simplicity and 

efficiency in capturing the most discriminant features. However 

LDA often fails when facing the small sample set and change in 

illumination, pose or expression. To overcome those difficulties, 

Principal Component Analysis (PCA), which recovers the most 

descriptive/informative features in the dimension-reduced feature 

space, is often used in the preprocessing stage. Although there is a 

trend of preferring LDA to PCA in classification, it has been found 

that PCA may perform better than LDA in some cases, especially 

when the size of the training set is small. In this paper we propose 

a parametric framework that can unify PCA and LDA to find both 

discriminant and descriptive features. To avoid the exhaustive 

parameter searching, we incorporate a non-linear boosting process 

to enhance a pool of hybrid classifiers and adaptively combine 

them into a more accurate one. To evaluate the performance of our 

boosted hybrid method, we compare it to state-of-the-art LDA 

variants and the other PCA-LDA techniques on three widely used 

face image benchmark databases. The experiment results show the 

superior performance of our novel boosted hybrid discriminant 

analysis. 

1. INTRODUCTION 

Face classification is a computer vision application that aims at 

automatically classifying and retrieving face images according to 

user interest. It may follow a face detection process, which locates, 

crops and aligns regions containing humane face images from 

pictures. The user interest often focuses on face/non-face 

classification, gender classification or face recognition. The 

mapping between high-level human interest and low-level visual 

content is the primary goal that face classification tries to find 

through a learning process. Although face classification has been 

successfully applied in many fields of science and engineering, it 

still faces many challenging problems [1]. 

Small Sample Set: In most face classification applications, the 

number of labeled face images is limited due to the cost of human 

effort. If the size of the labeled training sample set is very small 

compared to the feature dimensionality or the samples are not 

representative due to the changes of illumination, pose and/or 

expression, it is very difficult to estimate the correct data structure 

and distribution. The learning-based classification may be over 

trained on the small sample set and overfitting may occur. 

High Dimensionality: Face classification could use raw image 

pixel values or extracted statistical property values to represent the 

images in feature space. In either case the dimension of feature 

vector is high, ranging from tens to hundreds. The sample points 

are usually assumed to be from Gaussian Mixtures distribution. 

Traditional statistical approaches often break down during 

classification in the high-dimension space. 

2. LDA AND PCA 

2.1. Linear Discriminant Analysis 

Discriminant analysis is concerned with data in which each 

observation comes from one of several well-defined classes or 

populations. The main objective is to construct rules for assigning 

future observation to one of the classes so as to minimize the 

probability of misclassification or some similar criteria. Because of 

its effectiveness and efficiency in classification, many discriminant 

analysis based approaches have been used in face classification.  

Linear Discriminant Analysis (LDA) [2] is one of the most 

widely used discriminant analysis techniques in classification and 

dimension reduction. It has played a key role in many science and 

engineering fields such as image retrieval, face recognition and 

bioinformatics. Essentially LDA tries to find an optimal map W

from the original high dimension space to a low dimension space, 

which makes the samples from different classes more separate and 

the ones from same class more clustered. The problem of finding 

the optimal W can be mathematically represented as the following 

maximization problem: 
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where BS  is the scatter matrix between means of different classes 

and
WS  measures the variance of the samples in the same class. 

Although LDA has gained great success in many face 

classification applications, research indicates that its disadvantages 

may prevent correct estimation of the underlying distribution of 

data in the projected subspace [3, 4].  

Regularization 

It is well known that sample-based plug-in estimates of the 

scatter matrices based on equation (1) will be severely biased for a 

small training set. If the number of the feature dimension is large 

compared with the number of training examples, the problem 

becomes ill posed, i.e.,  0|| WSW W
T  in equation (1). A 

compensation or regularization can be simply done by adding 

quantities to the diagonal of the scatter matrix [5]. Although 

regularization is widely used to avoid the singularity, it is not 

theoretically justified. 

Effective dimension  

In LDA, W maps the original d1-dimensional data space X to a  

d2-dimensional space  . The maximum dimension of the 

projected subspace is  1C , where C is the number of the classes 

[2]. In many applications C is unknown and difficult to estimate. 

For those cases, C has to be assumed to be 2. Obviously such a 
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restriction on effective dimension may prevent more precise 

distribution modeling in the subspace with dimension larger than 1. 

2.2. Principal Component Analysis 

Principal Component Analysis (PCA) [6] is an unsupervised 

dimension reduction technique, which tries to represent high-

dimension data with some low-dimension data by finding the 

“Principal Components”. The Principal Components are defined as 

orthogonal to each other and account for the variances along each 

dimension. Compared with LDA which tries to capture the most 

discriminant features, PCA can be considered as finding the most 

descriptive features. Mathematically PCA can be modeled as 

following maximization problem: 
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where 
T

GG mmS ))(( xx is the covariance matrix and Gm

is the grand mean of all samples x   and I is an identity matrix.

3. HYBRID DISCRIMINANT ANALYSIS 

3.1. Problem Statement 

Compared with LDA, PCA is an unsupervised method and does 

not utilize the class information. Intuitively for a classification task 

one would prefer LDA to PCA. However recent research shows 

that in some cases PCA outperforms LDA [7]. Figure 1 shows a 

classical example of that situation. [7] 

LDA

PCA

class 2

class 1

Figure 1. Example of PCA outperforms LDA 

LDA assumes that the underlying structure of each class is 

Gaussian and the samples are evenly distributed. The assumptions 

are often invalid when the training sample set is small and the 

dimensionality of the feature space is high. Thus the most 

discriminant features learned by LDA often overfit on the training 

set. Since PCA estimate the distribution of all samples, it could 

provide robust performance in finding the most descriptive 

features. It is also worth noticing that PCA doesn’t have 

regularization problem and the limitation on effective dimension. 

3.2. Hybrid Discriminant Analysis 

Motivated by the observations and analysis in Section 3.1, we 

propose a parametric Hybrid Discriminant Analysis (HDA) as in 

equation (3), which would combine LDA and PCA in a unified 

framework and find both discriminant and descriptive feature for a 

classification task. 
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where ,  are two parameters, S  is the covariance matrix of all 

the training samples, and I is the identity matrix. The range of the 

parametric pair ),(   is from )0,0(   to )1,1(  . 

The different combinations of ),(  generate a variety of 

discriminant analysis with different attention on the scatter 

between classes and the cluster within classes. It is worth noticing 

that with )0,0(   we recover LDA and with   )1,1(

we recover PCA. The alternatives to LDA and PCA offer a 

possible estimation to the underlying distribution of data. Table 1 

summarizes three special cases of such a hybrid analysis. 

Table 1: Special cases of HDA
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3.3. Boosted Hybrid Discriminant Analysis 

As we indicated in Section 3.2, the optimal classifier of HDA 

could lie beyond PCA and LDA in the parametric space of ),( .

We have to search the whole parametric space to find the best pair 

*)*,( . This will result in extra computational complexity. It is 

also true that the best pair found for one particular dataset could be 

different from that of another dataset and therefore this cannot lead 

to a generalization. 

Based on the above analysis we adopt the idea of AdaBoost [8] 

and propose a boosted HDA which combines and enhances a set of 

HDA classifiers in the parametric space. The basic idea of Boosted 

HDA lies in the following two folds: 1) The incorrectly classified 

samples receive larger weight and the estimated distribution is 

biased to those samples, which forces the classifier to pay more 

“attention” to those difficult to learn samples. 2) The final 

prediction is the combination of the prediction from each classifier 

weighted by its classification performance, that is, the smaller the 

training error rate, the larger the weight. 

Algorithm Boosted Hybrid Discriminant Analysis 

Given: Training Sample set X and label Y 

K HDA classifiers with different ),(

        T: The total number of runs that the classifiers will be trained for.

Initialization: weight )(1, xw tk =1/|X|

Boosting

For Tt ,,1
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       For each classifier Kk ,,1  do 

Train the classifier on weighted samples. Note that 

Xx
tk xw 1)(,

(i) Update weighted mean all , p , and 

n  in the following way 

)(/)( ,, xwxxw tktkall

(ii) Update within-class, between-class scatter 

matrices and co-variance matrix         

Get the probability-rated prediction on each sample 

)1,1()(, xh tk

Compute the weights of classifiers based on its 

classification error rate tk ,
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Update the weight of each sample          

))(exp()()( ,,,1, yxhxwxw tktktktk

End for each classifier 

End for t

The final prediction 

tk

tktk xhsignxH
,
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4. EXPERIMENTS AND ANALYSIS 

4.1. Comparison to variants of discriminant analysis 

In the first experiment, we test the performance of our proposed 

methods when handling the small sample set problem. The state-

of-the-art linear and nonlinear variants of discriminant analysis we 

test include DEM [9], kernel DEM (KDEM) [3], BDA [4] and 

kernel BDA (KBDA) [4] with and without regularization. They are 

tested as comparison to our method. In all the experiments we 

conducted, our boosted HDA is trained on 36 HDA classifiers with 

 evenly sampled from 0 to 1 with step size 0.2. Simple 

Bayesian classifier is used in the dimension-reduced space for 

classification.

The data sets used in the experiments are the MIT facial image 

dataset (2358 images) [10] and non-face images (2958 images) 

from Corel database. All the face and non-face images are scaled 

down to 1616 gray images and normalized feature vector of 

dimension 256 is used to represent each image. The size of the 

training set is 100, 200, 400, and 800, respectively. Compared with 

the feature vector dimension of 256, the training sample size is set 

from relatively small to relatively large. Table 2 gives the 

experiment results with smallest error rate in bold. 

Table 2. Comparison to DEM, BDA, KDEM and KBDA 

Size of Training Set 

Error Rate (%) 100 200 400 800 

DEM w/o regulation 51.3 49.43 16.7 11.2 

DEM w/ regulation 10.5 19.3 15.0 9.0 

BDA w/o regulation 49.2 50.1 50.0 20.85 

BDA w/ regulation 34.7 25.4 18.5 19.3 

KDEM 6.93 1.93 1.7 0.5 

KBDA 3.04 2.89 2.58 1.44 

HDA

*)*,(
2.3 

(0.4,0.2) 

1.9 

(0.4,0.2) 

1.8 

(0.2,0) 

1.3 

(0.4,0) 

Boosted HDA 1.73 1.7 1.5 0.73 

Several conclusions can be drawn from result in Table 2: 1) 

Our proposed methods performs well when the training set size is 

small compared to the feature dimension. 2) Regularization is very 

important for sample-based estimations such as DEM and BDA 

while our HDA and boosted HDA implicitly release the need for 

regularization. Regularization can significantly improve the 

classification performance when the training set size is small, e.g., 

for DEM and BDA in average by 15%~40%. 3) When compared 

with the regularized DEM and BDA, the HDA performs much 

better than them. 4) Even when compared with the KDEM and 

KBDA, the boosted HDA performs better in 3 out of 4 cases. It 

should be noted only linear transformation is used in our hybrid 

analysis, but it is more efficient than nonlinear algorithms such as 

KDEM and KBDA. All these show the robust performance of the 

hybrid analysis. 

4.2. Effective dimension 

In the second experiment, we test the HDA versus the projection 

dimension using the same MIT face databases and COREL 

databases as in Experiment 1. Since the task is considered as two-

class classification problem (face vs. non-face) in traditional LDA, 

the effective projection dimension is one. The feature dimension 

and experimental setting are same as the previous except that the 

size of the training dataset is fixed at 100.

Table 3. The error rate vs. the projection dimension for 

Boosted HDA 

Projection Dimension 1 2 4 6 8 

Error Rate(%) 1.73 1.76 1.2 1.07 1.1 

Table 3 shows the error rate vs. the projection dimension. 

Clearly, the projection dimension of 6 gives the least error rate and 

all the higher projection dimension yields smaller error rate than 

that of C-1 (C=2).  This shows that the HDA increases the 

effective dimension and as a result the classification performance 

improves since the data structure could be more accurately 

modeled in a higher dimension space. 

4.3 Comparison to state-of-the-art PCA-LDA related 

techniques

To evaluate how well our boosted Hybrid Discriminant Analysis 

can discover the discriminant and descriptive features of face 

images, we test it on three benchmark face image databases with 

change of illumination, expression and head pose, respectively. 

Harvard Face Image database consists of grayscale images of 10 

persons. Each person has totally 66 images which are classified 

into 10 sets based on increasingly changed illumination condition 

[1]. The ATT Face Image database [10] consists of 400 images for 

10 persons. The facial images have resolution of 11292 with 

different expressions, with or without glasses under almost same 

illumination condition. The UMIST Face Database [11] consists of 

564 images of 20 people, which covers a range of poses from 

profile to frontal views. We randomly chose one person’s face 
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images as positive and the rest face images of others are 

considered as negative. In all experiments one third of the images 

in the database are randomly chosen as training set while the rest 

are used as test set. Figure 2 gives some example images from the 

databases.

Fig. 2 Example face images 

For comparison purpose, five state-of-the-art PCA and LDA 

related techniques are also tested on the same databases: Eigenface 

and Fisherface are two of the most widely used techniques in face 

classification [1]. S. Fidler and A. Leonardis studied the Fisherface 

method on how to appropriately perform PCA to facilitate LDA 

and propose a normalized PCA before LDA (N.PCA-LDA) [12]. A. 

Talukder and D. Casasent propose a linear combination of PCA 

and LDA (L. PCA-LDA), which takes LDA and PCA as the only 

two extreme cases of the combined classifier [13]. M. Wang et al

proposed a Principal Discriminant Analysis (PDA) which tries to 

combine PCA and LDA by finding an optimal projection matrix in 

linear combinations of PCA and LDA projection matrix [14].  

Table 4. Comparison of HDA, Boosted HDA and State-of-the-

art PCA-LDA techniques

Harvard Database 
Error 

Rate(%)
Subset

1

Subset

2

Subset

3

ATT

Databa

se

UMIST

Database

Eigenface 1.2 5.4 25.3 28.1 38.3 

Fisherface 0.7 1.4 3.7 19.5 31.2 

N.PCA-

LDA
0.8 1.1 2.8 17.6 32.9 

L.PCA-LDA 0.6 1.3 2.2 16.3 23.6 

PDA 0.9 1.2 3.4 17.9 29 

HDA 0.4 0.7 2.3 11.3 27.9 

Boosted

HDA
0.3 0.5 1.9 7.3 18.5 

The results are listed Table 4 with smallest error rate in bold. It 

is clear that our HDA performs better or comparable to other 

techniques while the boosted version provide best classification in 

all tests and more robustness to the changes of illumination, 

expression and pose than other techniques. Our approaches can be 

considered as novel compared to the previous work in that: 1) we 

use two parameters to control the balance between PCA and LDA. 

Thus our methods can search a parameter space and could find the 

most discriminant and descriptive features that fits the 

classification task and data set. And 2) in our boosted method we 

use AdaBoost to provide robust combination and enhance the 

classifier iteratively. It also avoids parameter searching which 

often suffers from a biased training data set. 

5. CONCLUSION AND FUTURE WORK 

Our novel Hybrid Discriminant Analysis provides a richer set of 

alternatives to LDA and PCA. As a result, it not only compensates 

for regularization that is afflicted by all sample-based estimation 

methods, but also increases the effective dimension of the 

projected subspace. In order to reduce the searching time, the 

boosted HDA is also proposed. We found it can provide two 

desirable properties. First, the boosted HDA can provide a unified 

solution to find both discriminant and descriptive features for 

specific application and database. Second, the weighted training 

schemes in boosting add indirect non-linearity and adaptivity to 

the linear methods and thus enhance it by iterations. 

The experimental tests on benchmark image databases have shown 

the superior performance of HDA and boosted HDA. In the future, 

we are interested in continuing this research work in the following 

direction: 1) using fusion methods to combine HDA classifiers and 

2) exploring learning based approaches to find optimal parameter 

settings for HDA. 
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