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ABSTRACT

Segmentation is a fundamental problem in image

processing having a wide range of applications. Image

segmentation algorithms in the literature range from a cost

criterion based optimization techniques to various heuristic

methods. In this paper, we propose utilizing mean shift 

spectral clustering for perceptually better image

segmentation results.

1. INTRODUCTION 

Image segmentation is a fundamental problem in image

processing with a wide range of applications including

feature extraction, filtering of noisy images, object

recognition, and object-based video or image coding. The

problem in image processing is defined as partitioning the

image into distinct regions such that each region is 

homogenous and none of the unions of adjacent regions are

homogenous.

Image segmentation techniques can be classified into 

four main groups. Edge-based approaches detect the edges 

in the images and link them to build contours; however,

these methods are only applicable when the pixel intensity

value itself is a suitable feature for segmentation [1]. Split

and merge approaches partitions the image into primitive

regions and use a similarity measure to merge neighboring

regions until a predefined stopping criteria has been reached

[2]. Region-based approaches, like region growing, have

the advantage of low computational cost. On the other hand, 

results obtained by these methods are quite sensitive with

respect to the chosen parameter values [3]. Clustering-based

approaches are generally non-parametric or have few 

parameters. Usually, the problem of setting thresholds has

been overcome by using a clustering based approach.

Introduced by Fukunaga and Hostetler [4], mean shift is

a non-parametric clustering approach that seeks modes of a

probability density function represented by a finite number

of samples. Mean shift gained popularity after the

formulation was revisited by Cheng [5], who applied the

algorithm to clustering problem in an elegant way. Being an 

unsupervised learning algorithm, image segmentation is a

natural application field for mean shift clustering. The

shortcoming of mean shift is that the results are not always 

perceptually important. In mean shift, the number of clusters

is automatically obtained for any given kernel function, and 

the segmentation results strictly depend on the choice of the

kernel. The problem of removing perceptually unimportant

clusters has been addressed before using heuristic methods

that threshold the number of the pixels in each segment or

check similarities between neighboring clusters using 

predefined thresholds. In this paper, we propose a principled

way to segment images by measuring pdf distances between

all pairs of mean shift results and remove/merge

perceptually unimportant clusters to provide the final

clustering.

2. THE PROPOSED METHOD 

In this section, starting with the definition of the mean

shift algorithm, the details of the proposed method will be 

discussed. Mean shift is a mode detection procedure based

on probability density gradient of the data. For a given

kernel function K (.,.), the kernel density estimate (KDE) 

becomes,

p(x)= ( (1)N
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Using (1), the gradient of the probability density of the data

is estimated and the local maxima points yc are obtained. At

these points, the gradient becomes null and the Hessian is 

negative (semi-)definite:
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The mean shift iterations are simply fixed-point iterations

towards these stationary points. The volume that includes

only the set of points that converge to the same mode after

these fixed-point iterations is defined as the attraction basin

and mean shift maps all the data samples to the local

maxima of their corresponding attraction basin.

To be able to utilize this mean shift clustering based

image segmentation approach, first the image should be

mapped into a suitable feature space. A convenient selection 

for the features is the pixel coordinates and the intensity

values for each color channel in the image. Other features 

like directional derivatives or any feature that can be 

defined in a pixelwise manner and can be utilized for

segmentation. Regionwise defined features like shape or 

texture parameters can be added into the feature set by

assigning those features to all pixels in the corresponding

region. This mapping step is followed by density estimation,

and finally, the resulting segmentation algorithm is based on

a clustering in the selected feature domain. Feature selection 
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will naturally affect the results, and there may be alternative

more informative feature definitions for specific areas of

interest. The method can be applied to any feature set;

however, for generality, in our computer simulations we

used pixel coordinates and intensity values as features.

Figure 1. Contour plot for the overall probability density for two Gaussian

clusters. Blue arrows represent the gradient field of the distribution.

Motivated by the relationship between spectral

clustering and density estimation [6] we propose using a

two-step clustering algorithm for image segmentation. The 

first step determines the modes of the density estimate of the

data with a fixed-point iterative procedure similar to mean

shift, and the second step employs spectral clustering on a 

reduced size affinity matrix that defines similarities between

the modes of the density. Typically, the number of modes M

is much smaller as compared to the original data size N, and 

since the mean shift procedure is O(N2), the spectral 

clustering step is computationally negligible with O(M3).

2.1. Decision Boundary for Segmentation 

In the Bayesian sense, optimal results for a 

classification problem can be obtained by minimizing the

Bayes risk function for the given data. The probability of

error is a widely accepted Bayes risk function, and the 

optimal decision boundary for the two-class case is given by

p1q1(x)=p2q2(x). In a clustering problem, however, the

individual class/cluster densities are not available, and the

overall data distribution is given by p(x)=p1q1(x)+p2q2(x).

The mean shift step inherently determines the boundaries

between the attraction basins of all modes present in ,

the kernel-based estimate of this distribution. Presented in

Figure 1 for a two-dimensional case, the local minimum of

the overall distribution between the modes is a reasonable

approximation to the Bayes boundary. For example, in the

one-dimensional scenario, the separation boundary satisfies

Kp̂

(3)0)(ˆ cKp y 0)(ˆ2
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Note that two modes, which are supposed to be in the same

cluster can be partitioned artificially by this algorithm.

Addressed by the following spectral clustering step, this

shortcoming will be discussed in section 2.5.

2.2 Kernel Density Estimation

Since data distributions tend to take complex forms in

many applications, determining a suitable parametric family

to be used in a parametric method might become a tedious

task. On the other hand, nonparametric methods based on 

sample spacing yield non-differentiable estimates.

Producing continuously differentiable pdf estimates, kernel

density estimation (KDE) provides an effective method for

obtaining a density estimate that is suitable for gradient-

based adaptive learning. 

As with kernel-based methods, the selection of a 

suitable kernel function is central to the approach, and the 

literature on nonparametric KDE clearly indicates that the 

kernel function should be selected to match the distribution

of the data as much as possible. At this point variable size

kernel density estimation merits special attention due to its 

fast asymptotic behavior. Introducing individual kernel sizes

for each data point will increase the overall computational

load; on the other hand, it will also increase the performance

by yielding a density estimate, which is less sensitive to

outliers and more tuned to local scales in the data. The

variable kernel size i is selected such that it becomes larger 

for samples that don’t have close neighbors; that is, it is

more likely to be an outlier. Using the median of K nearest

neighbor distance with a spherical Gaussian kernel or

covariance of K nearest neighbor with an anisotropic

Gaussian kernel are some possible choices for i.

2.3 Mean Shift Iterations

The mean shift algorithm is used here to obtain an 

intermediate clustering result to be refined in the spectral

analysis step, where the modes of the data distribution

provide a natural intermediate clustering solution; hence, the

data points in the same attraction basin form an intermediate

cluster associated with the corresponding mode.

Starting with the kernel density estimate definition

given in (1), one can derive the fixed-point iterations easily

using the fact that at the peak of each mode the gradient of 

the density becomes zero, which yields
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Reorganizing the terms in (7) and solving for x specifically, 

for a Gaussian kernel, one can obtain the update equation as 
N

i
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The computational load of this step is O(N) per sample

per iteration. In practice, all samples require a different 

number of iterations to converge and to be able to reduce

the computational load, a stopping criterion can be checked

for each sample individually, which leads to a decrease in 

the number of the samples that need to be updated.

Employing finite support kernels instead of Gaussian

kernels or utilizing Fast Gauss Transform [7] to
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approximate the iteration update are other approaches to

reduce the computational cost. Due to the existence of

statistical variance in the density estimation resulting from

the finite sample effects and the possibility of existence of

multi-modal clusters, in general, results of mean shift needs

to be refined. The proposed steps will be discussed in the 

following subsections.

2.4. The Normalized Mode Affinity Matrix 

Associating each data sample with a mode of the 

density estimate using mean shift, an affinity matrix needs

to be define to summarize the pair-wise affinities between

each mode. According to the connection between kernel 

affinity measure based methods and KDE [6], the affinity

matrix entries are given by the convolution of the kernels

associated with the given samples. In the case of variable

size Gaussian KDE, for kernel sizes i and j, this results in

the following affinity between these samples for the mode

affinity measure

)(
22 ijij
ji

G xxG (6)

A number of distance measures can be employed to define

the mode affinity matrix, including Euclidean distance

between the distributions of different modes or information

theoretic divergence measures. Employing the Euclidean

distance as the correlation measure, the affinity between 

mode i and j is given by

(7)xxx dppD jiij )()(

where pi(x) and pj(x) are the density functions of the

corresponding modes. Substituting the KDE definition

given in (1) one can rewrite the affinity measure between

the mode pair as

k l
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where  denotes the ki
k

x
th sample associated with mode i.

Recalling the characteristics of graph cut and normalized

graph cut, a more numerically stable affinity measure

between modes i and j can be defined as follows

jjii

ij
ij
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At this point, one should also notice that in the function

space defined according to the Euclidean inner product 

definition, and the measure defined in (9) is the angle

between the two distributions pi(x) and pj(x).

2.5. Connected Components of the Mode Affinity Matrix 

Any standard spectral clustering method in the

literature can be applied to the mode affinity matrix to

obtain the final clustering results, and it is important to note

that the computational cost required to determine

eigenvectors of this matrix is O(M2) per eigenvector, which

is negligible as compared to the O(N) per sample per 

iteration computational load mean shift. As well as applying

different spectral clustering methods from the literature, we

also propose utilizing a robust algorithm based on 

connected components analysis. Having a O(M4)

complexity, this algorithm is impractical for the dataset

itself; however, the approach is simple and produced good

results for the small-sized mode affinity matrices.

The procedure of determining the connected

components can be summarized as follows. First, all the

affinities in the mode affinity matrix G
~

are sorted in 

descending order. Next, the weakest connection is removed

and the graph connectivity is checked. This procedure is 

iterated until a predefined number of components in the 

graph is reached. Performed in each iteration with O(M2)

complexity, checking the graph connectivity is the dominant

computational load of this approach, resulting in a O(M4)

complexity for the overall algorithm. To check the graph

connectivity, a well-known connected components

algorithm is used [8].

Instead of defining the number of clusters as a preset

value, one can also define similar methods by defining a 

threshold for the affinity values between pairs, which will 

automatically determine the number of clusters. In this

method, selecting a suitable threshold can be achieved by

observing the clustering structure while increasing this

threshold from 0 to 1. The clusters that remain unchanged 

for a larger interval in this experiment can be regarded as 

statistically significant or natural. This procedure has been

previously employed for setting temperature and kernel size

in clustering algorithms [9].

 Constructing G
~

, one can have an idea of the distances

between the modes of the overall distribution and the mode-

affinity analysis step provides a systematic way of merging

the modes by statistically investigating the possibility that

neighboring modes might belong to the same cluster.

Although it might be possible to change the kernel size to

estimate clusters with a single mode for each one; however, 

the mode affinity analysis step defines a principled way of 

eliminating this requirement. In general, by evaluating the

results provided by mean shift, the proposed algorithm

provides a systematic approach for estimating perceptually

and statistically important segments in the image.

3. EXPERIMENTAL RESULTS 

In this section we will present simulation results and

compare the results with the ones obtained by mean shift.

The widely used baseball player image has been used here 

to enable further comparisons among the results of the some

other algorithms in the literature. The features used in the

experiments are the pixel coordinates and the intensity

values; rephrasing what was mentioned before, one may

choose more suitable features for specific cases; however, 

the aim of the paper is to demonstrate the contribution of the

proposed algorithm, rather than optimizing results for a 

specific segmentation application. An important point for

implementing a good density estimator is to normalize the
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Figure 2.a Figure 2.b Figure 2.c 

Figure 2.d Figure 2.e Figure 2.f 

Figure 2. Results of the Normalized Cut algorithm for 5, 10,and 15 clusters are presented in (a), (b) and (c). Results of the Mean Shift

Spectral Clustering are presented in (d), (e), and (f) for the same number of clusters, respectively.

data along each feature axis globally to be able to

effectively use the spherically symmetric kernels by 

choosing the kernel size as median of the neighbor

distances. This requirement is relaxed in the case of utilizing

neighbor covariance instead of distance for anisotropic

kernels, and note that, this leads to a more efficient estimate

as compared to the isotropic kernels, even if the dataset is

normalized.

Figure 2 depicts segmentation results for different

number of clusters. Particularly for this image, for 15 and 

more output clusters both algorithms perform similarly;

however, for smaller number of output clusters, unlike mean

shift spectral clustering results, results obtained by

normalized cuts deviates from perceptually meaningful

clusters. The original image is shown in Figure 3,

downsampled and converted to grayscale.

4. CONCLUSIONS 

In this paper mean shift spectral clustering, namely a 

mean shift algorithm with a spectral clustering based post

processing, is utilized for perceptually better results in

image segmentation. A variable size kernel density estimate

has been employed for this purpose due to its well-known

characteristics of fast asymptotic behavior and yielding a 

density estimate that is less dependent to the outliers in the

data. With a negligible amount of additional computation,

spectral analysis step provided perceptually more important

clusters as compared to the traditional mean shift algorithm.
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