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ABSTRACT
Denoising of color images can be improved by exploiting strong cor-
relation between high-frequency content of different color compo-
nents. We show that for typical color images high correlation also
means similarity, and propose to exploit this property using an op-
timal luminance/color-difference space projection. Experimental re-
sults confirm that denoising in the proposed color space yields supe-
rior performance, both in PSNR and visual quality sense, compared
to that of existing solutions.

1. INTRODUCTION

In the last decade, wavelet transform has gained popularity in im-
age denoising due to its good edge-preserving properties. However,
most existing wavelet-based denoising techniques [1]-[4] assume the
image to be grayscale. Grayscale image denoising can be straightfor-
wardly extended to color images by applying it to each color compo-
nent independently. However, better denoising should exploit strong
inter-color correlations present in typical color images. For exam-
ple, Piz̆urica and Philips [5] updated local activity parameter of their
grayscale image denoiser with the average value of the wavelet co-
efficients at the same image location. Scheunders and Driesen [6]
treated wavelet coefficients of color components as a signal vector.
Estimated covariance matrix of this vector was used to derive the lin-
ear minimum mean squared error (LMMSE) estimate by taking into
account the inter-color correlations.

Other researchers have proposed to exploit the inter-color cor-
relations by transforming images into a suitable color space. For
example, Ben-Shahar [7] used Hue-Saturation-Value (HSV) color
space. Chan et al. [8] have found that the chromaticity-brightness
(CB) decomposition, another color space transformation, can lead
to better restored images than denoising in RGB or HSV space. It
is easy to show that appropriate color transformation (or projection)
can improve the denoising performance. For example, using YCbCr
space [9] improves the performance by up to 1.3 dB compared to
denoising in RGB space; see Table 3. However, YCbCr space is not
necessarily optimal for image denoising.

In this paper we propose an optimal color space projection that
is adapted to image data and yields superior to existing solutions in
denoising performance. The projection is derived based on a key
observation that high-frequency wavelet coefficients across image
color components are strongly correlated and similar. Even though
the correlation of color components is a well known property, a par-
ticularly strong (close to 1) correlation between high-frequency con-
tent of color components has only recently been discovered [11, 12].
This property has since been successfully applied to color filter array
(CFA) demosaicking [11]-[13] and implicitly to color image denois-
ing [6, 5]. Our work goes a step further and shows that in a typical
color image the high frequency contents across color components
are not only highly correlated but also similar.

Table 1. Pairwise correlation of wavelet coefficients in the three
finest scales.

Color R & G G & B
Image Scale LH HL HH LH HL HH

1 0.983 0.993 0.995 0.991 0.996 0.994
1 2 0.978 0.991 0.997 0.992 0.997 0.997

3 0.947 0.968 0.989 0.995 0.995 0.995
1 0.811 0.879 0.969 0.979 0.989 0.980

2 2 0.687 0.834 0.974 0.973 0.985 0.992
3 0.256 0.584 0.857 0.958 0.957 0.985
1 0.942 0.964 0.957 0.887 0.950 0.939

3 2 0.951 0.960 0.974 0.877 0.929 0.962
3 0.917 0.893 0.913 0.767 0.741 0.826

As we intend to show, similarity of detail wavelet coefficients
explains the performance gain when denoising in luminance/color-
difference images. The luminance Y is an additive combination of R,
G and B color components and hence preserves the high-frequency
image content. On the other hand, the color differences Cb and Cr
are obtained by subtracting the color components: Cb ∝ Y-B and
Cr ∝ Y-R. This effectively cancels out high frequencies, leading to
smoother images, which are easier to denoise.

Building on these observations, we derive an optimal luminance/
color-difference space projection that minimizes the noise variance
in the luminance image, leading to better edge preservation. Color-
difference images comprise a larger portion of noise but are smooth
and hence can be efficiently denoised without sacrificing the quality.

2. INTER-COLOR CORRELATIONS OF
HIGH-FREQUENCY COEFFICIENTS

Gunturk et al. [11] have shown that high-frequency wavelet coeffi-
cients of color components are strongly correlated, with correlation
coefficients ranging from 0.98 to 1 for most images. This prop-
erty has been widely exploited in color filter array (CFA) demo-
saicking [11]-[13]. We replicated Gunturk et al.’s [11] results for
Daubechies-4 wavelet1 and the three finest scales in Table 1. These
results demonstrate that correlations remain strong even for coarser
scales. Here LH, HL and HH are vertical, horizontal and diagonal
detail wavelet subbands, respectively. Overall, HH subband correla-
tions are the strongest among all the subbands.

In general, perfect correlation between two random variables
does not necessarily mean their equality. However, this is the case
for high-frequency coefficients of color components, as follows from
the 3D scatter diagrams of high-frequency wavelet coefficients in
Fig. 1. Here, the coordinates of each point are the magnitudes of the
R, G, and B detail wavelet coefficients taken from the same image

1Its mother wavelet filter is (0.4830, 0.8365, 0.2241,−0.1294).
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Fig. 1. Scatter plots of detail wavelet coefficients. The coordinates
of each point are the values of the R, G, and B components.

Fig. 2. Basis vectors of YCbCr space projection.

location (first image in Fig. 3). The points are compactly clustered
along the line of vector 1 = (1, 1, 1)T . Similar scatter diagrams
can be obtained for all other test images. These results are similar
to Hel-Or’s directional derivatives scatter plots [12], but include all
detail wavelet coefficients.

The scatter plots also suggest that there exists a more effi-
cient basis capable of compact representation of the wavelet coef-
ficients. This decorrelation property has been extensively employed
in color image compression, by transforming the image from RGB
to YCbCr space [9]. Let RGB space correspond to the standard
basis in 3D, then the basis vectors for a typical YCbCr space are
v = (0.299, 0.587, 0.114)T , d1 = (−0.147,−0.289, 0.436)T and
d2 = (0.615,−0.515,−0.100)T [9]. Let x1, x2 and x3 be the val-
ues of the R, G and B detail wavelet coefficients (in the horizontal,
vertical, or diagonal subband) of a particular image location, respec-
tively. We call x = (x1, x2, x3)

T a signal vector. In Figure 2 we
overlay the basis vectors of YCbCr space on the scatter plot of all
signal vectors. As we can see, vectors d1 and d2 are orthogonal to
vector 1. Hence, the projection of the signal vectors onto d1 and
d2 is close to zero. This leads to cancelation of high frequencies and
smoother color-difference images that are easier to compress and de-
noise.

Fig. 2 also shows that vector v is not aligned with vector 1. The
reason is that the so defined luminance Y approximates the grayscale
image intensity and is backward compatible with the older black-
and-white analog television sets [9]. However, there is a large fam-
ily of luminance/color-difference spaces, all having basis vectors d1

and d2 orthogonal to 1, but using different definitions of Y, i.e. or-
thonormal double-opponent color-difference basis [10] where vector
v aligned with 1. In Section 3 we show that an optimal color space
for image denoising should be adapted to image noise statistics.

Table 2. PSNR performance (in dB) of Y, Cb and Cr using the
uHMT method. For uniform noise, the noise standard deviations
added to {R, G, B} are equal to σn = {0.1, 0.1, 0.1}; for nonuni-
form noise, σn = {0.15, 0.10, 0.05}. These two types of noise
remain the same for all other experiments in the paper.

Color Uniform noise Nonuniform noise
Image Y Cb Cr Y Cb Cr

1 26.69 37.46 36.68 26.16 38.39 35.69
2 30.96 36.90 35.56 30.59 37.99 34.55
3 30.96 36.43 36.96 30.47 37.81 36.09
4 30.73 37.69 36.14 30.37 38.85 35.16
5 26.80 35.85 36.06 26.18 36.78 35.08
6 27.57 35.99 36.65 26.95 36.15 35.11

3. THE OPTIMAL COLOR SPACE PROJECTION

For the sake of simplicity, we assume perfect correlation, namely

E(xixj) =
√

E(x2
i )E(x2

j ) =
√

s2
i s

2
j , ∀i, j (1)

where xi’s are the detail wavelet coefficients in the i-th color com-
ponent of the noiseless image, and s2

i ≡ E(x2
i ). For a typical color

image we have s2
1 � s2

2 � s2
3 = s̄2 (see discussion in Section 2).

However, the results derived in this section are applicable to arbitrary
signal variances.

Let vector s = (s1, s2, s3)
T . We consider a family of

luminance/color-difference spaces with basis vectors (v, d1, d2),
where d1 and d2 are orthogonal to s. Let xv = vT x be the lumi-
nance projection, and xdi = dT

i x, i = 1, 2, be the color-difference
projections. Varying the direction of di changes the noise compo-
nents of xdi only; the signal component of xdi remains small. This
leads to good denoising performance. On the other hand, the lumi-
nance xv has a large signal component. Its denoising performance
can be improved by reducing the projected noise variance.

This observation is illustrated in Table 2, where we apply a pop-
ular uHMT denoising approach [2] to color components in YCbCr
space. Denoising Cb and Cr leads to 6-7 dB better PSNR than de-
noising Y. Hence, the performance of luminance denoising, and not
that of the color differences, is the key factor in the overall denoising
performance.

Note that the basis vectors are not orthogonal to each other in
general, because d1 and d2 can not be simultaneously orthogonal to
v and s. To simplify the analysis we normalize the coordinates of
v = (v1, v2, v3)

T so that the variance of the signal projection onto
v is fixed. This is the topic of the following lemma.

Lemma 1 Let x be a random vector that satisfies assumption (1).
If we normalize v so that vT s = 1, then the expected squared norm
of the projection of x onto v is always equal to 1 and hence doesn’t
depend on v.

Proof: Let xv = vT x. Then E(x2
v) = E(vT xxT v) =

vT E(xxT )v = vT ssT v = 1. �
If the variance of xv is fixed, then choosing the direction of vec-

tor v that minimizes the noise projection will minimize the estima-
tion error of the luminance. In general, this doesn’t guarantee the
optimality of v, since the contribution of the luminance component
in the inverse formula might depend on v. However, Lemma 2 shows
that the constraint vT s = 1 also fixes the contribution of xv in the
inverse projection.
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Lemma 2 Let x = (x1, x2, x3)
T be a random vector that satisfies

assumption (1). Let T be an invertible color projection, such that

⎛
⎝ xv

xd1

xd2

⎞
⎠ = T

⎛
⎝ x1

x2

x3

⎞
⎠ =

⎛
⎝ vT

dT
1

dT
2

⎞
⎠

⎛
⎝ x1

x2

x3

⎞
⎠ (2)

where vT s = 1 and dT
1 s = dT

2 s = 0. Then, the corresponding
inverse projection is

⎛
⎝ x1

x2

x3

⎞
⎠ =

⎛
⎝ s1

s2

s3

⎞
⎠ xv + R

(
xd1

xd2

)
(3)

where R is a 3 × 2 matrix.

Proof: Let T−1 = (r,R), where r is the first column of T−1. From
TT−1 = I it follows that vT r = 1 and dT

1 r = dT
2 r = 0. Hence,

clearly r = s and we obtain (3). �
To simplify the inverse projection, we use four basis vectors (one

luminance and three color differences) instead of three:

xv = vT x

xdi = xi − sixv = xi − siv
T x (4)

One can easily check that the color difference vectors so defined are
orthogonal to s. The inverse projection is then

xi = sixv + xdi (5)

Let x̂i be a denoised version of xi. From (5) it follows that the qual-
ity of estimate x̂i = six̂v + x̂di depends on v indirectly through
the estimation error of x̂v and x̂di . The constraint vT s = 1 fixes
the signal variance of xv according to Lemma 1, and fixes the con-
tribution of xv in the inverse projection according to Lemma 2. The
estimation error of color differences is comparatively small and can
be neglected. Hence, choosing v that minimizes the variance of the
luminance noise projection leads to optimal denoising. Lemma 3
relates optimal v to the signal and noise statistics.

Lemma 3 Let n = (n1, n2, n3) be the noise vector in RGB space
and Σn its covariance matrix. Then the optimal vector v that yields
the smallest projected noise variance is

vopt = arg min
vT s=1

vT Σnv =
Σ−1

n s

sT Σ−1
n s

(6)

Proof: Let nv = vT n be the projection of n onto v. The variance
of nv is E

{
nT

v nv

}
= vT Σnv. According to Lagrange multiplier

method, the minimization of vT Σnv under the constraint vT s = 1
is equivalent to minimization of functional vT Σnv−2λvT s, where
2λ is the Lagrange parameter. Setting the derivative of the functional
to zero yields

d
{
vT Σnv − 2λvT s

}
dv

= 2Σnv − 2λs = 0

Solving this equation for v and normalizing the result yields (6). �

Fig. 3. Test images (Image 1 to Image 24, enumerated from left-to-
right and top-to-bottom).

Table 3. CPSNR performance (in dB) by applying OCP in different
approaches for grayscale images.

Uniform noise Nonuniform noise
Hard-Thr Soft-Thr GSM Hard-Thr Soft-Thr GSM

RGB 27.03 27.59 27.80 26.95 27.48 27.72
YCbCr 28.30 28.77 28.90 27.84 28.31 28.46
OCP 28.73 29.21 29.72 29.35 29.75 30.44

4. EXPERIMENTAL RESULTS AND DISCUSSION

In our experiments we use 24 test color images shown in Fig. 3.
Donoho’s estimator [1] is adopted to compute the noise variance in
each component σni , and then obtain the uncorrelated noise covari-
ance matrix Σn. The standard deviation of noise is estimated as

σ̂ni =
Median(|x̃i|)

0.6745
(7)

where x̃i are the noisy HH wavelet coefficients. The signal vector is
set as s = (1, 1, 1)T . As a performance measure we adopt the color
peak signal-to-noise ratio (CPSNR), defined as the average Mean
Square Error (MSE) of the denoised color components.

The proposed OCP can be combined with any grayscale
wavelet-based denoising approach. In Table 3 we show the results
of combining OCP with several existing approaches. Here, Hard-Thr
and Soft-Thr are hard and soft thresholding of wavelet coefficients
proposed in [4], and GSM stands for denoising based on Gaussian
Scale Mixtures model, proposed by Portilla et al. [3]. We used re-
dundant wavelet transform in Hard-Thr and Soft-Thr, and orthogonal
wavelet transform in GSM. The proposed OCP outperforms RGB
and YCbCr color spaces for all these methods.

We also compared the proposed OCP denoising with two re-
cently proposed wavelet-based denoising methods, LSAI2 [5] and
MML [6]3. The uHMT algorithm [2] is used in the proposed OCP
denoising. For fairness, we adopt an orthogonal wavelet transform
for all wavelet-based tested approaches. As shown in Table 44, the
proposed approach outperforms all others on every test image.

OCP denoising approach performs especially well near the
edges. To show this we partition the image into two regions cor-
responding to edges and smooth areas, and compare their denoising
performance. We use Canny edge detection [14] followed by thresh-
olding to obtain the classification. Table 5 shows the CPSNR of the

2We used the software provided by the authors with a minor modification
to allow for different noise variances in the R, G and B components.

3The paper mentions two parameter estimation schemes: using MAP and
ML framework. We adopted the latter because of better CPSNR.

4Due to limited space, we only present results for part of test images, but
the average CPSNR is for all test images.
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Table 4. CPSNR performance (in dB) of LSAI, MML, and the pro-
posed OCP methods

Color Uniform noise Nonuniform noise
Image LSAI MML Ours LSAI MML Ours

1 25.25 26.67 27.42 25.26 27.42 28.73
2 29.17 29.20 30.22 29.07 29.20 30.48
3 29.34 29.43 30.54 29.19 29.66 30.76
4 29.10 29.34 30.41 29.08 29.56 30.85
5 24.98 26.47 27.11 24.94 27.02 28.11
6 25.89 27.21 28.01 25.74 27.37 28.66
7 27.93 28.51 29.74 27.96 28.95 30.46
8 25.00 26.40 27.04 24.88 26.93 28.13
9 28.23 28.98 30.24 28.10 29.32 30.72
10 30.55 30.28 32.08 30.24 30.30 32.63

Average 27.47 28.18 29.18 27.36 28.44 29.81

Table 5. CPSNR performance (in dB) in the edge (E) and smooth
(S) image regions.

Color Uniform noise Nonuniform noise
Image LSAI MML Ours LSAI MML Ours

1 E 23.67 25.81 26.17 23.60 26.71 27.77
S 27.37 27.59 28.93 27.54 28.15 29.81

2 E 26.61 27.69 28.28 26.55 27.88 28.86
S 32.10 30.48 32.05 31.91 30.27 31.89

3 E 25.86 27.24 27.68 25.78 27.68 27.96
S 32.76 30.92 32.86 32.46 30.95 32.98

4 E 26.63 27.88 28.47 26.66 28.32 29.09
S 31.93 30.59 32.30 31.80 30.57 32.48

5 E 23.28 25.53 25.78 23.19 26.25 26.95
S 27.38 27.51 28.75 27.45 27.84 29.47

Average E 25.21 26.88 27.41 25.18 27.46 28.38
S 30.34 29.51 31.25 30.13 29.55 31.51

two regions for LSAI, MML, and OCP methods. The proposed OCP
denoising outperforms LSAI by 2-3 dB in edge regions and by 1-1.5
dB in smooth regions. MML denoising performs well in the edge
region, but still about 0.5-0.9 dB worse compared to OCP. However,
its performance in the smooth regions is quite poor, even when com-
pared to the LSAI approach.

The visual quality improvements are even more striking than the
PSNR gains. We applied the wiener2, LSAI, MML, and uHMT on
OCP to test image, see Fig. 4. The OCP denoising preserves edges
better than the other methods, while almost completely removing
the color artifacts. MML also produces sharp edges, but fails in the
smooth regions.

5. CONCLUSIONS

In this paper we developed a novel denoising approach that is based
on similarity of detail wavelet coefficients across the color compo-
nents. The denoising is done by projecting the image onto an opti-
mal luminance/color-difference space adapted to image noise. The
projection minimizes the noise in the luminance component, thus
preserving the high-frequency contents of the image. On the other
hand, the color-difference components are smooth and can be easily
denoised despite the amount of the noise present.

Experimental results suggest that the proposed optimal color
projection (OCP) approach outperforms the existing solutions both
in PSNR and in visual quality. In particular, the OCP denoising
demonstrates superior edge preservation properties while removing
almost all color artifacts.

(a) Origin image (b) Noisy image

(c) wiener2 (d) LSAI

(e) MML (f) Ours

Fig. 4. Comparison of different denoising approaches on the Fence
image corrupted by nonuniform noise.
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