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Abstract—In this paper, we present a novel frames-based
denoising algorithm. Using a general result on lifting frames,
we construct a non-separable 3D frame capable of robust edge
detection. This frame detects edge information by ensemble
thresholding of the filtered data. The denoising uses a hysteresis
thresholding step and an affine thresholding function, which are
filter-adaptive and take full advantage of the threshold bounds.
The threshold bounds are statistically determined from the
given data for each directional filter. We compare our denoising
method with other methods based on separable 3D wavelets
and 3D median filtering, and report very encouraging results
on applications to both synthetic and real confocal microscopy
data.

I. INTRODUCTION

During acquisition of image and volume data, the cha-
racteristics of the employed device produce noise that is
embedded in the image. Different devices and acquisition
procedures can lead to different accepted noise models, like
Gaussian or Poisson additive noise. The goal of denoising is
to recover the original image from a noisy image. Current
denoising techniques combine suitable filter/tranforms and
statistical estimation. Typically, the image is transformed,
using filters, into a domain where the noise can be identified;
statistical estimation is then performed to remove the influ-
ence of noise. Dima et al. [3] proposed a wavelet denoising
method for confocal microscopy imaging that amounts to
shrinking wavelet coefficients associated with noise to zero.
They subsequently developed a multiscale edge detector
based on the 3D wavelet transform [4]. Their technique is
based on the a trous pyramidal decomposition scheme. It
includes a multiresolution validation method to detect edges
and to suppress the responses from noise and contrast vari-
ations. Denoising based on non-linear anisotropic filtering
was proposed by Broser et al. [2]. Noise is being averaged
along the local axis of the neuron’s tubular-wise dendrites
in order to maintain morphological structure. The downside
of this method is that the structure of fine neurons can
be highly corrupted. Kofahi et al. [1] described a morpho-
logical neuron reconstruction using an adaptive exploratory
search at voxel intensity level. Directional filters are used
to describe the neuron’s morphology, assuming there is no
preprocessing. This method is well suited for images with
no significant noise or artifacts that can potentially lead to

A. Santamarfa-Pang, T.S. Bildea and I.A. Kakadiaris are with the Com-
putational Biomedicine Lab (formerly known as Visual Computing Lab),
Department of Computer Science, University of Houston, TX 77204, USA.
I. Konstantinidis is with The Norbert Wiener Center for Harmonic Analysis
and Applications, Department of Mathematics, University of Maryland,
College Park, MD 20742. This work was supported in part by NIH
SRO1EB001048-02.

1-4244-0469-X/06/$20.00 ©2006 IEEE

IT- 85

an improper reconstruction. Building on our previous work
[5], in this paper we propose a 3D frames-based denoising
method. Our current work refines the methods presented in
[5] and complements the existing literature by developing a
non-separable multidirectional frame to eliminate noise. In
particular, we have developed a non-separable 3D Parseval
frame based on a 1D piecewise linear spline tight frame. The
resulting filter bank is multidirectional, capable of detecting
edges along the main axes and diagonals in the 3D space.
The novelty of the denoising algorithm lies in the affine
thresholding strategy, which is adapted to the specific filters.
Even though we have developed this denoising algorithm
for confocal microscopy data, it is a general algorithm that
applies to any 3D data with similar noise assumptions.

The remainder of the paper is organized as follows. In
Section II we present the method for lifting frames in order
to produce new frames. We recall in Section II-A the notion
of Parseval frame and we briefly describe in Section II-B
the mathematical framework used for constructing our filter
bank. Section II-C presents the denoising algorithm proposed
in this paper. Results using synthetic and real data are
presented in Section III.

II. METHODS

In this section, we describe the mathematical framework
of our methods. The filter bank that we will use generates,
by considering all possible translations, a Parseval frame for
£2(Z*). Our method is a general one, and it can be used to
construct non-separable frames in any dimension d (d > 2).
Let us recall that a digital filter is a vector K € (*(7.%) for
which the Fourier transform k is a bounded function. This
filter acts on a digital signal by the convolution operator
Ck, defined as Ck(s) = s x K, s € £2(Z%. On ¢*(7.%
we will also consider the translation operator T},, defined by
Tns(m) = s(m — n), for every n,m € Z% and s € (2(Z%).

A. Construction of the 3D Parseval Frame

A frame in a Hilbert space H is a collection of vectors
{vi}ier C H, which satisfies the frame inequalities:

Allell> < > 1 < @,v; > | < Bljz||®, forall z € H,
iel
where A < B are positive constants called frame bounds. For
our purposes, I is a countable index set. A Parseval frame
is a frame for which A = B = 1; for these frames the
inequality above becomes the well-known Parseval iden-
tity. Parseval frames have the advantage that they behave
as orthogonal bases: the same vectors that are used in
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the analysis (decomposition) can be used in the synthe-
sis (reconstruction). We will construct a Parseval frame
for the Hilbert space ¢%(7>). We begin our construction
with the 1D frame described by Ron and Shen [8] as
being the simplest example of a compactly supported tight
spline frame. The low-pass kg, band-pass ki, and high-
pass ko filters, associated with the Riesz scaling function
(¢) and two wavelets (17 and 1)y) are defined as follows:
ko(w) = cos?(w/2), ki (w) = i(v/2/2) sin(w), and ky(w) =
sin?(w/2). Note that

o (w)[? + k1 (@) 1* + [k2(w)” = 1,

for all w € [—m,w). Therefore, the translates Ty, (n € Z) of
the impulse responses kg =Ko = (1/4)[1,2,1], ki =Ky =
(1/4) [vV2,0,—v2] and k» = K, = (1/4) [-1,2, 1] form
a 1D Parseval frame for EQ(Z). Note that K is a first-order
singularity detector while K is a second-order singularity
detector. To obtain 3D filters, we simply take the 3-folded
tensor products of this frame with itself to obtain a separable
3D frame with 27 filters. More precisely:

kp321q.34r (Wi, w2, w3) = kp(wi)kg(w2)kr(ws) (1)
with p,q,r € {0,1,2}.
B. Augmentation of the 3D Tight Frame

We focus our attention on the filters K, K3, Kg, and
their impulse responses ki, ks, kg, respectively. We wish to
augment our frame with non-separable filters capable of
detecting edges along the main diagonals in 3D space.

We use our previous framework for augmenting tight
frames [10]; it follows a general result, the proof of which is
based on Lemma 2.5 of Papadakis [6]. Assume that K., with
r=20,1,..., R is a family of digital filters whose integer
translates form a frame for ¢>(Z<%). For a given positive
integer @, let U be a 277 %periodic (Q+1) x (R+1) matrix-
valued function whose entries (U(w)),,, are continuous. The
matrix multiplication

U(W)(KO(W)-,Kl (w), .. .,KR(w))t =
= (FO(W),F1 (W), ... .,FAQ(w))t_/

defines a new family of digital filters F,, with ¢ =
0,1,...,Q.

Proposition 1: If there exists A > 0 such that for almost
every w € [-m,m)% we have Alx|| < ||U(w)x| for
all x € CE*Y| then the integer translates of the new family
of digital filters Fy, ¢ = 0,1,...,Q also form a frame for
(7.9, If, in particular;, U (w) is an isometry for almost every
w € [, m)%, then the resulting and the original frames have
the same frame bounds.

In our case R = 26 and Q = 30. We choose U to
be a constant matrix implementing an isometry. Table I
presents our choice of U by listing the result of applying the
operations associated with the augmentation process. All the
other 23 frame elements not listed remain unchanged. The
new frame incorporates Fy, F3, and Fy, which contain scalar
multiples of the separable original filters. They are operators

TABLE I
THE AUGMENTATIONS TO THE SEPARABLE FRAME

Part of augmented frame ' | Part of U(Ko(w),..., Kag(w))?
Py — LK,
fy = S,
FQZ ékg
Iy = Ko+ K3 + K1)
Fog = 1(Ko — K3 + K1)
Fog = %(Kg-f—f(e.*’ﬁ)
Fag = %(kq—kg—f(l)

able to detect edges parallel to the coordinates axes. This
frame incorporates a set of new directions Fy7, Fbg, Fbg and
F30 containing non-separable filters that are tuned along the
main diagonals. For example, Fbg estimates the directional
derivative in the direction of the vector (1,1, 1)! while F3q
estimates the directional derivative in the direction of the
vector (1, —1, —1)%,

C. The FAST Denoising Algorithm

Let X represent a 3D volume of data and let DF be
the collection of all directional filters used for thresholding,
DF = {F] s Fg., Fg, F27, Fgg./ Fgg, Fgo}. Let YF‘ = X % F,
where F' € DF is one of the directional filters, and let
{Yr}repr be the edge responses in all the directions
considered. Our objective is to use the edge information we
can obtain from thresholding these coefficients in order to
reconstruct a denoised dataset.

We first estimate statistics for each direction. Let mp,
sr be the mean and standard deviation, respectively, of the
absolute values of all the coefficients in the F' direction,
where F' € DF. We then set for each band a high threshold
bound, T5(F') (T5(F) = mp +sr) and low T7 (F) threshold
bound (T} (F) = mp) and outline a hysteresis affine thresh-
olding strategy as follows. The function that implements
affine thresholding is (7% > T7 > 0):

T ,if || > Th
T;ETl (z + sgn(z)T1) ,if Ty <|z| < Ty
0 , otherwise.

PTy,Ta (T) =

If a coefficient’s absolute value for the direction F' exceeds
T»(F), the coefficient is retained. If the absolute value is
between T3(F) and T»(F), to make the decision about
retaining this coefficient we check all other directions for
the coefficients that correspond to the same spatial location
(voxel). If at least one more direction has absolute value
above the lower threshold bound, the coefficient is retained.

Lif (|YF| > To(F) ) or
(T2(F) > [Yr| > Th (F)
and
dH #F: |Yu|>T\(H))
0 , otherwise

or.(F). 1o (F) (YF)

Y =

(@)
In addition, we can recursively apply our thresholding
scheme using the output of the K filter (low-pass band)
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as the new input. In summary, our FAST (Frames-based
Adaptive hySteresis Thresholding) algorithm operates as
follows:

Denoising algorithm : FAST

Input : The noisy data X and the number of
decomposition levels L.

Step 1: Recursively decompose the volume X up
to level L using the filter bank defined in
Table I to obtain Y.

Step 2: Compute Y by applying the ensemble
approach described in Eq. 2.

Step 3: Reconstruct X from Yz using the filter
bank defined in Table I.

It should be noted that our ensemble approach to threshold
frame coefficients is different from the classical wavelet
thresholding approach. Our method takes advantage of multi-
directional information. Our previous method [5] made dis-
tinction between directions by considering dual sets. This
asks for a precedence order and leads to omitting voxels
with acceptable filter response. We will capture these voxels
by treating all directions as equally important.

III. RESULTS AND DISCUSSION

We have tested our method on several confocal microscopy
datasets. The neuron cells are either loaded with Alexa Fluor
555 and 488 dyes or taken from a line expressing enhanced
green fluorescent protein. The current cells of interest are
CA1 pyramidal cells from mice or rat hippocampi, and the
original cell volume was de-convolved using Huygens™
software. These experimental datasets consist of three or
more partially overlapping stacks with an approximate res-
olution of 1024x1024x149 each. A detail of such dataset is
presented in Figure 2(i). The resolution is 0.230178 pm in
the z,y directions and 0.5 um in the z direction. Note that
each stack may exhibit a different noise level with the effect
that noise is not homogenous when the stacks are combined
together.

We have compared our method to two others reported
in the literature, Bishrink and Median, in addition to our
previous method [5]. The Bishrink method implements a
separable orthonormal 3D wavelet transform followed by
bivariate shrinkage of the resulting coefficients, as described
by Sendur and Selesnick [9]. The Median method uses a
non-separable, non-linear median filter (mask size: 3x3x3).

To establish a quantitative assessment of our method
compared to the other algorithms, we have created a syn-
thetic volume dataset. Figure 2(a) depicts a volume with
dimensions of 219x131x122 and with isotropic voxels. The
volume was created starting with the morphology descrip-
tions in the file n125.swc from the Duke-Southamptom’s
neuron database. This binary synthetic volume establishes the
ground truth data for the comparison. We then corrupted this
dataset using Poisson noise [7], denoised it using the three
methods referenced above, and compared the reconstructed

TABLE II
PERFORMANCE EVALUATION

Denoising Method | TPR | FPR | TNR | FNR GM
FAST 97.54 | 0.66 | 99.34 2.64 | 98.44
Frames-based [5] | 93.06 | 0.89 | 99.11 6.94 | 96.04
Bishrink 87.60 | 0.41 | 99.59 0.12 | 93.40
Median Filter 79.04 | 0.11 | 99.89 | 20.96 | 88.86

denoised volume voxel-wise to the ground truth. To obtain
the binarization of the denoised volumes we used a maximum
intensity threshold of 250 for the noise. Figures 1 and 2 are
presented for visual inspection of the results. Figure 1 depicts
the entire synthetic volume with noise, its maximum intensity
projections and a detail. Figures 2(a)-(h) depict maximum
intensity projections and a 3D detail of the denoised volumes.
Visual inspection reveals that the FAST algorithm is more
robust to speckle noise influence than the Bishrink algorithm,
and that both of these algorithms preserve the morphology
of the dendrites more faithfully than median filtering. Fi-
gures 2(i,j) depicts details of the real data and the same detail
after denoising with FAST. Again, we note that our method
results in more visually meaningful structures.

The comparison metrics used in this paper are the true
positive rate (TPR), the false positive rate (FPR), the true
negative rate (TNR), false negative rate (FNR), and the
geometric mean (GM). These metrics are defined as follows:
TPR is the proportion of voxels that were correctly identified
to belong to the object of interest, FPR is the proportion of
voxels that were incorrectly classified as the object of inter-
est, TNR refers to the proportion of background voxels that
were classified correctly, FNR is the proportion of object’s
voxels that were incorrectly classified as background, and
the GM is given by: vT'P -T'N. Table II summarizes the
results. All methods exhibit low FPR, a reflection of the fact
that they are quite adept at identifying spurious artifacts. The
poor performance of the median filtering method in terms
of TPR reflects the fact that it fails to accurately preserve
morphology and our algorithm achieves the highest TPR of
almost 98%.

IV. CONCLUSION

We have presented an improved method that allows us to
denoise volume data from optical microscopy. It is based on
a tight frame incorporating multidirectional edge detectors
and it produces results that enable improved reconstruction.
Although the results are presented in this application domain,
our algorithms apply to any biomedical imaging data with
similar assumptions about the sources of noise.
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(c,g) Bishrink, and (d,h) median filtering; (i) detail of real data and (j) detail
denoised with FAST.
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