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ABSTRACT
In a portable device, such as a digital camera, limitations

on storage are an important consideration. In addition, due
to constraints on the complexity of available hardware, im-
age coding algorithms must be fairly simple in implemen-
tation. This work presents one such efficient method for
coding multiple images of a scene, in a manner that comple-
ments a post-processing-based enhancement system. Super-
resolution, image restoration and de-noising algorithms have
demonstrated the ability to improve the quality of an im-
age using multiple blurry, noisy copies of the same scene.
This additional quality does not come without cost, how-
ever, since an image capture system must store each image.
The proposed encoding scheme is derived from a general
linear system model, and encodes multiple images of the
same scene, with different amounts of blurring. It is also
compared with a variety of methods based on current cam-
era compression technology. For the tested images, this ap-
proach requires one-half the rate required by other methods
at lower rates. In addition, for a small performance loss, it
is essentially implementable without using any compression
hardware.

1. INTRODUCTION

Two of the most expensive camera components, and key de-
terminers of image quality, are the camera lens and the sen-
sor array. Limitations in these components (which introduce
blurring and noise), however, can be partially overcome by a
variety of post-processing methods, based on multiple ver-
sions of the same scene. It has been shown, for example,
that such an array of images can be used for de-noising [1],
restoration [2] or most recently super-resolution [3, 4] post
processing. The goal of this work is to achieve efficient,
low complexity compression of an array of blurred, noisy
images, such as those utilized by these applications.

Distributed source coding is coding paradigm for a col-
lection of correlated sources, motivated by information the-
oretic results [5,6] , that places the most of the complexity of
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an encoding/decoding scheme in the decoder [7]. This cod-
ing strategy is ideal for a system with limited computational
resources, such as a portable image capture device. Dis-
tributed image compression solutions have been proposed
for pairs of images (one with added noise) [8], and for multi-
view camera systems [9]. The work presented herein pro-
poses a distributed style of coding based on a more general
version of the system model utilized in [8] and [7], which
is more appropriate for images captured through a lens by a
charge coupled device (CCD) array. Efficient representation
can be achieved by coding a single blurred image using a
JPEG (or even fixed-rate coder) and coset coding/decoding
the rest of the images based on this model. The proposed
method is compared with more traditional alternatives of
comparable complexity, and at lower rates, uses roughly
half the storage required by alternatives to decode images
to a given fidelity.

This paper is organized as follows. Section 2 outlines a
system model for a general coset coding framework. Sec-
tion 3 discusses how the method is applied to coding of dig-
ital camera images. Results and concluding remarks follow
in Section 4.

2. CODING WITH SIDE INFORMATION
PARADIGM

This section presents a coding strategy for random data re-
lated with general linear models. Given x ∈ R

M , let y1, y2 ∈
R

N be the output of correlated sources such that:

y1 = H1x + n1 (1)

y2 = H2x + n2 (2)

where H1 and H2 are constant matrices, and the noise
terms n1 and n2 are independent of x. Assuming y1 is
available at the decoder, the goal is to encode y 2.

Let y2[n] represent the n-th entry of vector y 2. The en-
coder compresses each entry y2[n] individually . This oper-
ation involves:

• a source space partition, in which the encoder parti-
tions the real line into disjoint quantization intervals
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Fig. 1. Simple model of a digital camera. The scene, x, is assumed to be a high-resolution image that is blurred by B 1 and
downsampled by matrix D prior to being captured by a CCD array, which adds noise v 1 to the system. A variety of blurring
operators can be effected by de-focusing the lens [3]. x is DN × 1, B 1 is DN ×DN , D is N ×DN , and y1 is thus N × 1.

and finds the index of the interval to which the quan-
tized y2[n] belongs. For simplicity, only fixed-rate
uniform quantizers are considered.

• a coset partition, in which the encoder partitions the
reconstruction points of the quantizer into bins (cosets).

Let Γi denote the quantization interval to which y2[n] be-
longs and ci be the corresponding reconstruction point. Coset
coding consists of finding the index of the coset containing
ci and sending this index to the decoder over an error free
channel [7]. Let r denote the number of bits required to rep-
resent the coset index corresponding to x[n]. Adopting the
coset partitioning strategy in [10], we find

j = i mod 2r (3)

where j is the coset index.
Utilizing the side information y1 as well as the coset

index j that are available at the decoder, the decoder recon-
structs each entry y2[n] individually. The decoder consists
of:

• an estimator, with which the decoder forms a linear
least mean-squared-error (LLMSE) estimate x̂ from
ŷ1,and uses x̂ to form ŷ2. The side information is
given by z = ŷ2.

• a minimum distance (MD) rule detector, in which the
decoder determines the quantization interval to which
y2[n] belongs using the coset index j and the initial
estimate z[n]. A simple, albeit suboptimal way to find
the quantization interval of y2[n] is to apply a MD
rule as follows:

ci∗ = arg min
ck

|z[n] − ck|, (4)

where the minimization is over the set of reconstruc-
tion points {ck} within the jth coset. In applying the
MD rule we implicitly assume that z is close enough
to y2. Thus, the quantization interval is correctly de-
codable with a small probability of error.

• a centroid reconstruction step, in which the decoder
forms the estimate

ŷ2[n] = E{y2[n]|y1[n], y2[n] ∈ Γi∗}. (5)

3. APPLICATION TO CODING DIGITAL CAMERA
IMAGE DATA

This coding strategy may be applied to an array of blurred
and noisy downsampled images ( such as those captured by
a camera for the purpose of super-resolution). These can be
represented with a system of K equations

y1 = H1x + n1 (6)
...

yK = HKx + nK (7)

Hk represents the composition of a blurring and downsam-
pling operator, each of which may be described by a matrix.
Figure 1 gives a diagrammatic representation of how each
Hk is constructed. Let Bk represent the kth M ×M (con-
volutional) blurring operator introduced by de-focusing the
lens, and let D represent a downsampling operator, which
downsamples by a factor of D (an M/D×M matrix). Then,
Hk = DBk is an N ×DN matrix, and yk = DBk +nk.

Figure 2 illustrates the relationship between the scene,
the image capture hardware, the encoding/decoding algo-
rithm, and a post-processing unit. Assuming that the image
capture system has limited computational resources, each
image yk must be coded prior to any post-processing, which
takes place after the images are downloaded to a system
such a computer. In a single camera system, y 1 is not freely
available at the decoder, and must be coded. Given this in-
formation, however, each pair of images (y 1, yk) for k =
2...K can be treated as y1 and y2 in the previous section,
and the decoding algorithm applies. For two-dimensional
data, the estimate x̂ is formed using bilinear interpolation,

II ­ 66



cosets

image

encoder

cosets

y1

y2

yK

…

compute 

zk

image

decoder

MD

symbol

recovery

centroid

estimator

estimate x

…

y1

y2

yK

…

encoder decoder
x

lens

+

CCD

array

x

post-

processing

algorithm

Fig. 2. End-to-end description of a multiple image capture system. A super-resolution application, for example, constructs
a higher-resolution image than can be captured by a camera through extensive post-processing. In the same way, this work
proposes an encoder/decoder pair, based on coset coding, that places most of the computation into the decoder. Results
indicate that “image encoder” and “image decoder” blocks may be removed, with little effect on performance.

combined with LLMSE Wiener deconvolution. Noise prop-
erties are estimated at the decoder; it is assumed that the
blurring operators are known or can be estimated as well
(based on the characteristics of the camera).

Camera data consists of integers in the range [0, 28 −
1], and coset information corresponds to least-significant-
bits. The simplest coset rate-allocation strategy assigns the
same number of coset bits to each pixel, but this method
constrains output rates to the set [0, 8] ∈ Z bits-per-pixel
(bpp). Allocating different amounts of rate across space is
one method of achieving a continuum of target rates. A
simple, ad-hoc approach based on ŷ1, which is known at
the decoder, is adopted to allocate more bits, without de-
coder feedback, to regions where the difference in neigh-
boring pixels is larger (since the estimate zk is likely to be
closer to yk in smooth regions). This step is what captures
some of the spatial correlation present in the image.

4. RESULTS AND CONCLUSIONS

The proposed method is compared with other approaches
that are readily implementable in current camera hardware.
The simplest approach is to code each image separately with
a JPEG coder (standard in most current digital cameras). A
more informed and approach is to JPEG encode the differ-
ence between successive blurry frames, to remove some re-
dundancy. In the proposed approach, three methods of cod-
ing y1 are tested: (1) JPEG with a quality factor of 100, (2)
Huffman coding of pixel differences (less complicated than
JPEG coding) and (3) no coding; each pixel is coded with
8 bits of precision. y2...yK are coded with the proposed
coset-based method.

Blurred, noisy images are synthetically generated from
standard test images (lena, barbara, baboon and boats).
These are convolved with the 8 blurring operators consid-

ered in [3], and downsampled by a factor of 2. Gaussian
noise with variance 0.01 is added to each image. Rate-
distortion performance is analyzed for the image ensem-
ble using total coded rate and average mean-squared-error
(MSE):

average MSE =
1
K

∑

k

E{(yk − ŷk)2}. (8)

For the tested images, the proposed method using either
JPEG or Huffman-based coding requires roughly half the
rate required by the JPEG based alternatives to compress a
set of images to the same average MSE. Only a small per-
formance loss is incurred when y1 is transmitted uncoded.
This result implies that an ensemble of images could be
transmitted more efficiently by a camera that uses less hard-
ware. Data for lena and boats are included in Figures 3 and
4, and are representative of the performance with the other
images. Figure 4 shows that overall performance decreases
if y1 is coded at a lower fidelity; the coset decoder benefits
from a quality representation of y1. Table 1 reveals the ad-
vantage of the proposed approach: the rate to code y 2...yK

based on JPEG is larger than the coset rate by up to a factor
of 4. The overall gain in efficiency of the proposed method
approaches this ratio as more image are coded.

The presented encoding/decoding scheme facilitates ef-
ficient compression for multiple images, via distributed source
coding principles. Useful properties of the solution include:
(1) the efficiency of the algorithm increases with the num-
ber of captured images, and (2) almost all computational
complexity is entirely in the decoder, i.e. the method can
be applied with minimal compression hardware (consider-
ably less complex than that in currently available cameras).
Future work will include a more quantitative analysis of
coset rate-allocation, transform coding strategies, and ex-
periments involving enhancement of coded camera data.
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Fig. 3. Performance of the proposed method v. alternatives of similar complexity. Notice that the performance obtained
without coding y1 (denoted by the dashed line) is only slightly less efficient than that achieved by a variety of methods that
do compress y1.

image coset JPEG
lena (@ MSE = 1.8) 4.0 15.1
lena (@ MSE = 0.9) 10.5 19.6

barbara (@ MSE = 2.8) 5.8 16.4
barbara (@ MSE = 1.4) 17.1 21.0
baboon (@ MSE = 6.5) 10.1 19.9
baboon (@ MSE = 3.3) 25.3 24.8
boats (@ MSE = 2.2) 6.0 15.8
boats (@ MSE = 1.1) 14.1 19.1

Table 1. Comparison of total rate (bpp) required to code
y2...yK for equivalent MSE. At low rates, the proposed
method is around 3 times efficient as the alternatives.
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Fig. 4. Comparison of achieved performance for lena when
y1 is JPEG compressed with different quality factors. Note
overall performance decreases, though rate can be saved on
y1; performance with uncoded y1 is thus competitive.
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