
A GLOBAL APPROACH TO JOINT QUANTIZER DESIGN FOR DISTRIBUTED CODING OF
CORRELATED SOURCES

Ankur Saxena∗, Jayanth Nayak† and Kenneth Rose∗

∗ ECE Department, University of California, Santa Barbara, CA 93106, USA.
†IRISA/INRIA, Campus Universitaire de Beaulieu, 35042, Rennes France.

Email:{ankur, rose}@ece.ucsb.edu, jnayak@irisa.fr

ABSTRACT

The focus of this work is on the design of efficient quantizers for
correlated sources subject to complexity limitations on the encod-
ing terminals. Existing iterative descent methods rely heavily on
initialization, and the prevalence of numerous ‘poor’ local optima
strongly motivates the use of a global design algorithm. We propose
a multiple-prototype based deterministic annealing approach for the
joint design of all components of a generic distributed source coding
system. Our approach avoids many poor local optima, is indepen-
dent of initialization and does not assume any prior information on
the underlying source distribution. Simulation results show substan-
tial gains over a Lloyd-like iterative algorithm.

1. INTRODUCTION

Consider a distributed network of limited complexity sensors that
transmit information to a central unit. Nearby sensors may be de-
signed to observe different physical quantities, e.g., temperature, hu-
midity, pressure. We are interested in efficiently reconstructing one
or more physical quantities at the central unit (decoder). Typically,
there is a high degree of correlation between data being transmit-
ted by different sensors. Since the encoders at each sensor location
function independently, they will not, in practice, accomplish the
maximum possible lossy compression of the source pair. However,
to obtain the best possible transmission rates from independent en-
coders, it is necessary that the code design is performed jointly.

The field of distributed source coding began in the seventies with
the seminal work of Slepian & Wolf [9] who gave bounds for lossless
coding of correlated sources. Later, Wyner & Ziv [11] extended the
analysis to lossy coding. However, it was not until the late nineties
that practical methods based on nested lattices [12] or channel cod-
ing principles [5] for designing quantizers were developed. From
the source coding perspective, generalizations of the Lloyd algo-
rithm [4] were presented in [2, 3, 7] where different encoders and
decoders were optimized in an iterative fashion to design locally op-
timal quantizers.

Current approaches based on channel coding are generally suit-
able when sources can be modeled as noisy versions of each other,
where the noise is additive and unimodal in nature. But such ap-
proaches are of limited use where such simplifying assumptions do
not apply. An illustrative example is when, say, the temperature
and humidity are drawn from a mixture of joint gaussian densities,
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where the mixture components are due to varying underlying con-
ditions such as the time of day, pressure, etc. On the other hand,
Lloyd-algorithm based methods to design a distributed vector quan-
tizer (DVQ) suffer from the presence of numerous ‘poor’ local min-
ima on the distortion-cost surface. Clever initializations such as the
ones proposed in [10] for multiple description scalar quantizer de-
sign may lead to better or even global minima, but to the authors’
knowledge there have been no generalization to vector quantization,
nor has such a scheme been found for DVQ design. All these dif-
ficulties underline the need for a global optimization scheme, i.e.,
a powerful optimization tool that provides the ability to avoid poor
local optima. We propose a deterministic annealing approach for
optimal DVQ design.

Deterministic annealing (DA) is motivated by the process of an-
nealing in physics. It is independent of the initialization, does not
assume any knowledge about the underlying source distribution and
avoids many poor local minima of the distortion-cost surface [8].
In DA, the encoding rule is randomized and the expected distortion
is minimized subject to a constraint on the level of randomness as
measured by the Shannon entropy of the system. The Lagrangian
functional can be considered as the free energy of the system and
the Lagrangian parameter as the ‘temperature’. The minimization is
started at high temperature (high degree of randomness), where, in
fact the entropy is maximized and hence all the reproduction points
are at the centroid of the source distribution. The minimum is then
tracked at successively lower levels of entropy (temperature), by re-
calculating the optimum locations of the reproduction points and the
encoding probabilities at each stage. As the temperature reaches
zero, the average distortion cost is directly minimized and a deter-
ministic encoder is obtained.

DA can also be used in the estimation of a signal from one or
more of its noisy versions, e.g., efficient quantizers can be designed
for the CEO problem [1]. A DA-based approach for estimating a
signal from its corrupted version has been shown to offer significant
improvement over other traditional methods [6].

The rest of the paper is organized as follows. In Section 2, we
state the problem formally, establish the notation and describe an
iterative method based on Lloyd’s algorithm for multiple prototype
(MP) coder design. In Section 3, we derive the DA approach to
DVQ design and provide its update formulae (necessary optimality
conditions). Experimental results are given in Section 4, followed
by the Conclusions section.
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Fig. 1. Correlated Source Coding

2. PROBLEM STATEMENT AND ITERATIVE DESCENT
METHODS

Consider the scenario in Fig. 1. X and Y are two continuous-valued
i.i.d., correlated (possibly vector) sources which are compressed and
transmitted independently at rates R1 and R2 bits per sample respec-
tively by the encoders. The decoder wishes to reconstruct either one
or both sources and minimize the following expected distortion:

E{αd(X, X̂) + (1 − α)d(Y, Ŷ )}, (1)

where α ∈ [0, 1], and X̂ and Ŷ are the reconstruction values for X
and Y respectively. For this, we need to design encoders for X and
Y , and a joint decoder. Design techniques based on iterative descent
methods which converge to a local minimum have been proposed in
the literature [2, 3, 7]. We next adopt this framework and describe
a locally optimum algorithm for the multiple prototypes structure,
which can be viewed as combining histogram or kernel based tech-
niques for estimating source distributions and quantizer design. This
approach will underline the need for powerful optimization schemes
such as DA.

Specifically, we have a training set T ≡ {X ,Y}, which consists
of m-dimensional i.i.d. vectors. We design a vector quantizer ‘Q’
for X using Lloyd’s algorithm [4]. Q assigns training set data points
to one of the K regions, Cx

k . The regions Cx
k partition the space into

disjoint Voronoi regions each associated with a prototype xk. Next,
each one of the K regions Cx

k is mapped to one of the I indices,
via a mapping v(k) = i, which we refer to as Slepian-Wolf (SW)
mapping, since this mapping is the module that in fact exploits the
correlation between sources. The index ‘i’ is finally transmitted to
the central unit. The block diagram of the two stages of encoder
for a source and an example of SW mapping with m =1, K = 6 and
I = 3 is given in Fig. 2. The region associated with an index i is
Rx

i =
⋃

k;v(k)=i Cx
k .

We next define regions Cy
l , Ry

j and prototypes yl in the Y do-
main, following the same steps that led to Cx

k , Rx
i and xk. Here,

the L regions are mapped to J indices via SW mapping w(l) = j.
We re-emphasize that the idea behind the SW mappings is to exploit
the correlation between the quantized versions of the sources and to
reduce the transmission rate. Finally, at the decoder we have I × J
reconstruction values x̂ij and ŷij for X and Y respectively. To min-
imize the expected distortion defined in (1), the SW mappings v,
w and reconstruction values x̂ij and ŷij , which are initialized ‘ran-
domly’ are optimized iteratively using the following steps:

1. SW Mapping for X: For k = 1 : K, assign region k to index
i, i.e., v(k) = i such that:

i = arg min
i′

∑

(x,y)∈T ;

x∈Cx
k

{αd(x, x̂i′j(y))+(1−α)d(y, ŷi′j(y))}.

(2)
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Fig. 2. Block diagram of an encoder and an example of SW mapping
from prototypes (Voronoi regions) to indices.

2. SW Mapping for Y: For l = 1 : L, assign region l to index
j, i.e., w(l) = j such that:

j = arg min
j′

∑

(x,y)∈T ;

y∈C
y
l

{αd(x, x̂i(x)j′)+(1−α)d(y, ŷi(x)j′)}.

(3)

3. Decoder Rule: For i = 1 : I and j = 1 : J , find x̂ij and
ŷij , such that:

x̂ij = arg min
a

∑

x∈Rx
i ,y∈R

y
j

d(x, a), (4)

and ŷij = arg min
b

∑

x∈Rx
i ,y∈R

y
j

d(y, b). (5)

We will refer to this approach as Separate-Lloyd (SL) because ini-
tial quantizers are separately designed using Lloyd’s algorithm and
fixed. Then the mappings from prototypes to indices for X and
Y and the final reconstruction values are optimized in an iterative
manner. The SL approach inherits from Lloyd’s algorithm the inter-
related shortcomings of getting stuck in a local minima, and depen-
dence on initialization. Moreover, the source correlation has been
ignored during the design of quantizers for the individual sources.
All these issues call for the use of a global optimization scheme,
such as DA. We present the DA algorithm, its necessary conditions
for optimality and finally the simulation results.

3. DERIVATION OF THE DA ALGORITHM

3.1. Preliminaries

A formal derivation of the DA algorithm is based on principles bor-
rowed from information theory and statistical physics. Here the de-
terministic encoder is replaced by a random encoding rule. For a
detailed derivation of DA, please refer [8].

Let us first consider the initial quantizer for X . The original
training set data point is assigned to each prototype in probabil-
ity. These probabilities are determined by finding the distribution
that minimizes an appropriately defined distortion cost between data
point and prototype, subject to a specified level of randomness (mea-
sured by Shannon conditional entropy of the encoding probability
distribution). Alternatively, we can view the prototypes as partition-
ing the space into Voronoi regions, so a structural constraint is im-
posed on the association probabilities. The structural cost function
that imposes the desired partition is:

D1 =
1

N

∑

k

∑

(x,y)∈T ;x∈Cx
k

d(x, xk), (6)
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whose probabilistic equivalent is the expected structural cost:

〈D1〉 =
1

N

∑

k

∑

(x,y)∈T
ck|xd(x, xk), (7)

where ck|x = Pr[xk|x] = Pr[x ∈ Cx
k ] is the probability of quan-

tizing data point x to prototype xk and hence to the kth ‘Voronoi’
region. N is the number of points in the training set.

We choose the distribution that minimizes 〈D1〉 subject to a con-
straint on the Shannon entropy,

H1 =
−1

N

∑

k

∑

(x,y)∈T
ck|x log(ck|x). (8)

Minimizing 〈D1〉 subject to a constraint on H1 yields the Gibbs dis-
tribution,

ck|x =
e−γ1d(x,xk)

∑
m e−γ1d(x,xm)

, (9)

where γ1 is the inverse ‘temperature’ controlling the ‘fuzziness’ in
the X quantizer.

Similarly in the Y domain, we have cl|y = Pr[yl|y] = Pr[y ∈
Cy

l ]. Here we minimize 〈D2〉 subject to the constraint, H2 to get the
encoding probabilities cl|y . The respective expressions are:

〈D2〉 =
1

N

∑

l

∑

(x,y)∈T
cl|yd(y, yl), (10)

H2 =
−1

N

∑

l

∑

(x,y)∈T
cl|y log(cl|y), (11)

cl|y =
e−γ2d(y,yl)

∑
p e−γ2d(y,yp)

. (12)

Again, here γ2 controls the fuzziness in the Y quantizer.
We now recall that v(k) and w(l) are the SW mappings from

the prototypes to the indices. The Gibbs distribution over Voronoi
cells induces the following distribution of encoding to the possibly
non-contiguous ‘regions’ associated with the indices ‘i’ and ‘j’:

ri|x =
∑

k:v(k)=i

ck|x, (13)

rj|y =
∑

l:w(l)=j

cl|y. (14)

Note that so far we have only considered the structural distor-
tion that imposes a Voronoi structure on the prototype partition. The
overall distortion function which we seek to minimize is:

D =
1

N

∑

k,l

∑

(x,y)∈T
ck|xcl|y{αd(x, x̂ij)+(1−α)d(y, ŷij)}, (15)

subject to a constraint on the joint entropy of the system.
By construction the source variables X and Y and the transmit-

ted indices I and J form the Markov chain: I −X − Y − J . Hence
the joint entropy of the system is H(X, Y, I, J) = H(X, Y ) +
H(I|X) + H(J |Y ), where H(X, Y ) is the source entropy, which
is obviously unchanged by encoding decisions. Note that these en-
tropies are different from those imposed on structural costs in (7) and
(10) to obtain Gibbs distribution in (9) and (12) respectively, since
the latter’s objective was imposing MP based nearest-neighbor struc-
ture on the initial quantizers. The optimization of D in (15) subject

to the entropy constraint is equivalent to the Lagrangian minimiza-
tion,

min
{xk},{yl},γ1,γ2,{x̂ij},{ŷij}

L = D − TH (16)

where the Lagrange parameter T (temperature) controls the entropy
of the distribution.

3.2. Update Equations for DVQ Design

Here we specialize to the squared-error distortion measure to pro-
vide specific update formulae. The approach is clearly not restricted
to this choice. At a fixed temperature T , the free energy L may
be minimized by a gradient descent procedure using the following
expressions for the gradients:

∂L

∂x̂ij
=

−2α

N

∑

(x,y)∈T
ri|xrj|y(x − x̂ij), (17)

∂L

∂γ1
=

1

N

∑

i,j,k:

v(k)=i

∑

(x,y)∈T
rj|yck|x(x − xk)2(Lxy − Lij

xy),(18)

∂L

∂xk
=

2γ1

N
(x − xk)ck|x

∑

j

rj|y(Lv(k)j
xy − Lxy), (19)

where Lij
xy = α(x − x̂ij)

2 + (1 − α)(y − ŷij)
2 +

T log
∑

k:v(k)=i e−γ1(x−xk)2 +T log
∑

l:w(l)=j e−γ2(y−yl)
2

is the
contribution to the cost incurred when the data pair (x, y) is recon-
structed by using indices i and j, received from the encoders of X
and Y respectively. Also Lxy =

∑
i,j ri|xrj|yLij

xy is the average
contribution to the cost due to the data pair (x, y). The gradients
with respect to ŷij , γ2 and yl can be directly stated using symmetry.
The annealing is started from a high temperature and is performed at
a sequence of temperatures that are successively lower. At the limit
of zero temperature, quenching is done, i.e., the scaling parameters
γ1 and γ2 are forced to infinity and hard multiple prototype DVQ
cost (1) is optimized.

4. EXPERIMENTAL RESULTS

We first illustrate the DA advantage in DVQ design via a toy exam-
ple. Suppose there are two sensors which can detect a signal above
a threshold and can transmit only one bit of information. To decide
this threshold is equivalent to a design of two level quantizer. Let
the signals at the sensors be X ∼ N(0, 1) and Y = X + Z where
Z ∼ N(0, 0.1) is independent of X and we are interested in the
reconstruction of X only, i.e., α = 1. The rates are R1 = R2 = 1 bit
and allow 1 prototypes per source X and Y . Design a DVQ using
a 2000 point training set data. Using the SL approach, we get parti-
tions for X and Y about their means (origin). Thus, the correlation
between the sources cannot be exploited. The DA approach, on the
other hand gives the thresholds as -0.47 and 0.78 for X and Y , re-
spectively. The expected distortion that SL and DA yield is approxi-
mately -5 dB versus -6.7 dB in this example for the above mentioned
partitions. This clearly shows the gains that DA can achieve over the
SL approach.

In the next two examples, X and Y are drawn from a mixture
of four joint gaussians. In our simulations, the mixtures components
are assumed to be equiprobable. The means for X , Y and correlation
coefficients for the four components are taken as {0, 0, 0.87}, {1,
0.5, 0.9}, {-1, 1, -0.92} and {2, -1, -0.95} respectively. The variance
of X and Y in all the components of the mixture was taken to be 1.
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Fig. 3. Comparison between SL and DA approaches for R1 = R2

= 2, K = L = 4, α = 0.5. D from DA is -8.26 dB while SL gives
best and worst D as -7.64 and -0.52 dB respectively. For ease of
comparison, a line along which D = -8.26 dB is drawn.

The SL algorithm is run 20 times while joint-DA only once. In both
examples, a scalar quantizer is designed using a training set of 2000
samples. In the first case, the weight factor α is taken to be 0.5 and
the rates for X and Y are 2 bits each. A low complexity system is
designed with 4 prototypes for both X and Y . The results are shown
in Fig. 3. Here DA outperforms the best solution obtained by SL
algorithm by ∼ 0.6 dB in terms of expected distortion. Note that
there is a huge gap of ∼ 7.1 dB between the best and worst runs of
SL algorithm. This can be explained by non-efficient SW mapping
from the prototypes to indices in the second stage of SL technique. It
highlights the fact that the cost surface is riddled with local minima
that easily trap greedy techniques such as SL. In the second case, α
is 0.6, R1 = 2, R2 = 1 while the number of prototypes for X and Y
are 8 and 4 respectively. The results are shown in Fig. 4. Note that
sometimes the distortion for X obtained from SL algorithm is better
than DA but the net distortion achieved by DA is consistently better.

One might argue that if the initial quantizers are of high resolu-
tion and the number of prototypes/index is large, then we can com-
pensate for the loss incurred in separate design of initial first level
quantizers. However, this will merely transfer the difficulty into the
SW mapping modules and exacerbate their design complexity, the
results of which is critical as shown in the above example. Ongo-
ing research is concerned with ‘softening’ the SW mappings as well
which will further enhance the algorithm performance.

5. CONCLUSIONS

We have proposed a multiple prototype based deterministic anneal-
ing approach for the design of low resolution quantizers for corre-
lated sources. This approach assumes no prior knowledge about the
underlying probability distribution of the sources, eliminates the de-
pendence on good initial configurations and avoids many poor local
minima of the distortion cost surface. The necessary conditions (and
update equations) for quantizer design are derived and presented.
Experimental results comparing DA with Separate-Lloyd algorithm
are shown. Significant improvements confirm the advantage of us-
ing a global optimization scheme such as DA for correlated sources
quantizer design.
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Fig. 4. Comparison between SL and DA approaches for R1 = 2, R2

= 1, K = 8, L = 4, α = 0.6. D from DA is -6.02 dB while SL gives
best and worst D as -5.47 and -1.54 dB respectively. For ease of
comparison, a line along which D = -6.02 dB is drawn.
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