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ABSTRACT 

In this work, we propose novel encoder algorithms for the 
state-of-the-art video coding standard H.264, to generate 
decoder friendly video bitstreams. Using the proposed algo-
rithms, it is possible to generate bitstreams requiring signifi-
cantly less decoding complexity, with negligible effect on 
picture quality. This is achieved by using novel algorithms 
for mode decision and motion estimation that bias easy-to-
decode motion vectors in a Rate-Distortion optimized fash-
ion. Experimental results show that, more than 15% decod-
ing complexity reduction is achieved with less than a 0.1 dB 
penalty on the average video quality. We believe that this 
approach has potential in various use cases especially in 
mobile multimedia systems, where the video decoder opera-
tion is often dominating the handsets power consumption. 

1. INTRODUCTION 

H.264/AVC is the state-of-the art video coding standard that 
is jointly developed by ISO/MPEG and ITU-T/VCEG study 
groups. When compared to the earlier video coding stan-
dards, H.264/AVC achieves significantly better video quality 
at similar bitrates. Due to its high compression efficiency 
and network friendly design, H.264/AVC is gaining momen-
tum in industry ranging from third generation mobile mul-
timedia services, digital video broadcasting to handheld 
(DVB-H) to high definition digital versatile discs (HD-
DVD). H.264 achieves increased compression efficiency 
with the expense of increased complexity for both the en-
coders and the decoders. Similar to previous standards, the 
complexity of the H.264 encoder is typically much higher 
than that of the decoder. There exist several tools that sig-
nificantly reduce the encoding complexity by resulting 
slightly lower video quality. These tools include for example 
fast motion estimation [1], fast mode decision [2] and dis-
abling the use of some of the motion modes etc. The com-
monality of all these is, they achieve complexity reduction 
by performing a complexity-video quality trade-off.  

For decoders, the situation is completely different. Since 
the decoder is strictly defined by the standard, it is not pos-
sible to have lower complexity decoding by performing a 
similar video quality-decoding complexity trade-off. Even 
though the decoder has less complexity than the encoder, the 
importance of low complexity decoding is equally important 
as low complexity encoding, if not more. The reason for that 
is, in many applications such as DVD players, digital TV 
receivers etc, the end-user equipment has only the decoder 
implemented and the decoder block is the only codec related 
functional block adding complexity to the system. Even if 

the encoder and decoder co-exist in a system, such as in a 
video conferencing application, the decoding complexity 
could become very important if the encoder and decoder are 
running on different hardware platforms. 

In this work, we propose several encoding algorithms 
that can be used to generate fully H.264 compliant low-
complexity bitstreams, which require significantly less de-
coding complexity than bitstreams created with traditional 
encoding algorithms. More specifically, the focus of this 
work is to generate bitstreams that would require less 
amount of half-pixel and quarter pixel interpolations at the 
decoder, as interpolation step consumes most of the decod-
ing processor cycles [3]. This is achieved in two stages. At 
the motion estimation stage, the candidate motion vectors 
having less decoding complexity are biased using a Lagran-
gian based cost function. At the mode decision stage, the 
decoding complexity of each mode is estimated and the 
modes with less decoding complexity are favoured using a 
similar cost function. Using the proposed methods, the en-
coder can generate low-complexity bitstreams having over 
15% less decoding complexity with less than a 0.1 dB pen-
alty on the video quality on average. 

This paper is organized as follows; Section 2 provides a 
brief analysis of the H.264 decoder complexity and the in-
terpolation scheme. Section 3 presents the proposed motion 
estimation and mode decision algorithms to generate the low 
complexity bitstreams. Section 4 presents the simulation 
environment and the experimental results. Conclusions and 
discussions are presented in Section 5.   

2. H.264 DECODER COMPLEXITY ANALYSIS 

Previous analyses on H.264 decoder complexity show 
that the motion compensation is the most computationally 
complex step at the decoder, followed by the deblocking 
filter process [3][4]. The high complexity in motion com-
pensation is due to interpolation needed to decode motion 
vectors with half or quarter pixel accuracy. It was shown 
that, for a baseline H.264 decoder, this interpolation step 
takes around 39% of the execution time on average, and it 
can go up to 44% for some sequences. In the next subsec-
tion, we first analyze the details of the H.264’s interpolation 
scheme and present source of its complexity.     

2.1 Half-pixel and Quarter-pixel Interpolation 

H.264 allows usage of motion vectors with quarter and half 
pel precision to increase the accuracy of the motion predic-
tion. For the case of integer motion vectors, the prediction 
signal contains the original values of the reference picture; 
otherwise the values at non-integer positions need to be in-
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terpolated from the original pixels at integer positions. In 
Figure 2, the original pixels at integer locations are labelled 
by upper-case letters within shaded boxes, other symbols 
represent other locations to be interpolated.  The samples at 
half-pixel locations, b, h, m and s, are interpolated from inte-
ger samples by applying a one dimensional 6-tap FIR filter 
on the integer sampled pixels. For example, the sample at 
half-pixel location b is obtained from the samples at integer 
locations E, F, G, H, I and J given in Figure 1. More specifi-
cally, b is given as 

32

)16).5.20.20.5(( ++−++−= JIHGFE
b      (1) 

The half-pel sample at position j is interpolated by apply-
ing the 6-tap filter on the 6 samples at half pixel locations 
either in vertical or horizontal direction. In other words, in 
order to interpolate j, the samples at locations cc, dd,, h, m, ee
and ff must be interpolated first (alternatively, j is obtained 
using the samples at locations aa, bb, b, s, gg and hh, which 
would yield the same value). Due to the additional need of 
interpolating other half-sample locations, the interpolation of 
sample at position j has the most complexity among other 
half-pixel samples. 

Figure 1 H.264 Sub-Pixel Interpolation 

The samples at quarter pixel positions are obtained by 
averaging two nearest samples at half or integer positions. 
Figure 2 illustrates the details of the quarter pixel interpola-
tion scheme employed in the H.264 standard. For each quar-
ter pixel, two values are averaged by up-rounding. In Figure 
2, quarter pixels are denoted by letters a, c, d, e, f, g, i, k, n, p, 
q, r and are placed within shaded boxes. Each quarter-pixel is 
connected to two other half or integer pixels that will be used 
to calculate the corresponding quarter pixel. For example, in 
order to interpolate quarter-pixel d, the integer pixel G and 
the half pixel h must be averaged. So, the half-pixel h must 
be interpolated first using the 6-tap filter, in order to calculate 
the value of quarter pixel d. Therefore, the quarter pixels, for 
which the half pixel j is used for averaging, have the most 
complexity among other quarter pixel locations (i.e. the quar-

ter pixels at locations f, i, k, q have the highest interpolation 
complexity). 
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Figure 2 Quarter Pixel Interpolation Scheme 

3. ENCODING FOR LOW COMPLEXITY 

DECODING 

In the previous section, it was shown that the interpolation 
complexities of different quarter and half pixel locations are 
not the same. Therefore, the decoding complexity depends 
on both the horizontal and vertical sub-pixel components of 
the motion vector. For example, if a motion vector has inte-
ger values for both its horizontal and vertical components, 
the decoder does not need to perform any interpolation to 
obtain the prediction signal, and hence have minimal com-
plexity. However, the complexity would increase, if the mo-
tion vector points to locations that are difficult to interpolate, 
such as the half pixel location j, or any quarter-pixel location 
that requires the value of j.

We first analyzed the amount of operations needed to in-
terpolate each sub-pixel location, using a highly optimized 
H.264 decoder implementation [4]. Using this data, we 
approximated the interpolation complexity of each motion 
vector with different horizontal and vertical sub-pixel accu-
racies. Figure 3 presents the approximate interpolation com-
plexities required to decode motion vectors with different 
accuracies. The reader is referred to [4][5] for a detailed 
analysis of interpolation complexity.  
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Figure 3 Approximate Interpolation Complexities of Mo-
tion Vectors with different sub-pixel components. 

In Figure 3, each location is represented by a box and the 
numbers in each box indicate the approximate interpolation 
complexity required to decode the motion vector, larger 
number indicating a higher complexity. For example, if the 
motion vector has integer values at both directions, the in-
terpolation complexity is zero. However, if the motion vec-
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tor points to the half-pixel location just next to the integer 
pixel in horizontal direction (indicated as b in Figure 2), the 
interpolation complexity increased to 1, as the decoder 
needs to perform an additional 6-tap filtering. 

We use this approximate complexity data to generate bit-
streams that have more motion vectors pointing to easy-to-
interpolate locations, in order to reduce the decoding com-
plexity. This is achieved in two stages. At the motion estima-
tion step, the candidate motion vectors having less decoding 
complexity are biased using a Lagrangian based cost func-
tion. At the mode decision step, the decoding complexity of 
each mode is estimated and the modes with less decoding 
complexity are favoured using a similar cost function. The 
details of these stages are presented in the next subsections. 

3.1 Motion Estimation 

At the motion estimation stage, the reference picture is 
searched for the candidate motion vectors, and the motion 
vector that results in the best prediction is chosen. The con-
ventional motion estimation that is implemented in the cur-
rent H.264 test model chooses the motion vector that mini-
mizes the following cost function.  

)(.))(,(),( mmm RcsSADJ motionmotion λλ +=         (2) 

with m = (mx, my)
T being the motion vector, and λmotion being 

the Lagrange multiplier The first term of the above cost func-
tion is the distortion term and it is given as the Sum of Abso-
lute Difference (SAD) between the original signal s, and the 
reference signal c(m). The rate term R(m)  represents the 
number of bits that would be used to code the motion vector 
m.

In order to favour motion vectors with less interpolation 
complexity and penalize ones with higher complexity, we 
modify the conventional cost function, and use the one indi-
cated as in Equation 3.  

)(.),(),,(' mmm MEMECmotionMEmotion CJJ λλλλ +=   (3) 

The proposed cost function has an additional term, 
CME(m), that represents the decoding complexity of the can-
didate motion vector, m. CME(m) is basically a two dimen-
sional array and it is calculated using the data given in Figure 
3. For example, if the candidate motion vector has integer-
pixel accuracy in both horizontal and vertical directions, then 
CME(m) is zero. Similarly, if m points to location j, the value 
of CME(m) is 4. The value of CME(m) is further multiplied by 
the Lagrangian term λMEC, to adjust the complexity–video 
quality trade-off. Larger the value of λMEC, less decoding 
complexity the resulting bitstream has, with a higher penalty 
on the coding efficiency. 

3.2 Mode Decision 

After the motion estimation is performed for all candidate 
INTER modes, the coding results of the modes are com-
pared and the one that minimizes the following Lagrangian 
cost function is chosen. 

),,(.),(),( McsRrsSSDMJ MODEMODE λλ +=        (4) 

with r being the reconstruction signal for the given mode, M,
and λMODE is the Lagrangian multiplier. M is referring to one 
of the candidate INTER modes as illustrated in Figure 4. 

Figure 4 INTER modes supported by H.264 standard 

The first term of the above cost function is the distortion 
term, and it is given as the Sum of Square Difference (SSD) 
between the original and the reconstructed signal. R(s,c,M)
is the rate term that represents the number of bits used to 
code the mode, M. In order to favour the INTER modes with 
less interpolation complexity, we modify Equation 4, and 
use the following cost function:  
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Similar to the proposed cost function used in Motion Es-
timation, Equation 5 has the additional term CMODE(M)
representing the decoding complexities of candidate modes.
CMODE(M) is the sum of all the interpolation complexities for 
all motion vectors involved in the candidate mode, and is 
illustrated below in Equation 6. 
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where num_of_MVs refers to the number of motion vectors 
used in the given mode. For example, if the candidate mode 
is INTER_8x8, in which the macroblock is divided into four 
blocks and each block has its own motion vector, the value of 
num_of_MVs is four. CMODE(M) is  multiplied by λMDC to adjust 
the complexity-quality trade-off at the mode decision stage. 
The values for λMDC and λMEC affect the encoding performance 
and should be careful selected. Results of our simulations 
suggest that values 2, 50 for λMDC and λMEC respectively result 
in the best complexity-quality trade-off. The effect of chang-
ing the values of Lagrangian parameters, λMEC and λMDC, could 
be observed more in the experimental results. 

It should be noted that, conventional cost function is used 
in the proposed method when deciding between INTER and 
INTRA modes.  

4. EXPERIMENTAL RESULTS 

In order to test the performance of our scheme, we first gen-

erated the low-complexity bitstreams for different test se-
quences, using the methods described above. Then using a 

highly optimized H.264 decoder implementation on an 

ARM-11 platform, we decoded all the bitstreams and re-

corded the required number of processor cycles for each one. 

We repeated the same process using the conventional en-

coder, with the same encoder settings, to get the reference 

RD Optimized bitstreams. 

Figure 5 presents the results for the test sequence Fore-

man. When compared to the RD Optimized bitstream, the low 
complexity bitstream has 14% less decoding complexity. The 
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penalty on video quality, to achieve lower complexity decod-

ing is 0.1 dB. We also present the decoded pictures from both 

the bitstreams in Figure 6. It is observed that the low com-
plexity bitstream has practically the same visual quality as the 

RD Optimized one. 

As mentioned before, the values of λMDC and λMEC are cho-
sen as 2, 50 respectively. However, our method allows one to 

decrease the decoding complexity more by allowing a higher 

penalty on the coding efficiency. This could be achieved by 

using larger values for λMDC and λMEC.. In order to demonstrate 
the effect of changing those values, we repeated the above 
experiment with λMDC being 4 instead of 2, to favour modes 
having less decoding complexity, and generated the lower 
complexity bitstream. As it is seen in Figure 7, the decoding 
complexity is decreased even more, with slightly less coding 
efficiency.

5. CONCLUSIONS 

In this work, we proposed novel encoder algorithms that are 
used to generate H.264 compliant decoder-friendly bit-
streams. Using the proposed algorithms, it is possible to 
generate bitstreams requiring significantly less decoding 
resource consumption, with negligible effect on picture 
quality. This is achieved by using novel algorithms for mode 
decision and motion estimation that bias easy-to-decode 
motion vectors in a Rate-Distortion optimized fashion. It 
was shown that, more than 15% decoding complexity reduc-
tion is achieved with less than a 0.1 dB penalty on average 
video quality. It was also shown that proposed methods al-
low further complexity reduction, by having slightly less 
picture quality. 

It is believed that, this approach has many important use 
cases in mobile multimedia systems, where the video de-
coder operation is often dominating the handsets power con-
sumption.  
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Figure 5 Analysis of the proposed method 

Figure 6 Reconstructed Frame # 89 Foreman 
a: RD Optimized Reference b: Low Complexity  
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