
GENERATING H.264/AVC COMPLIANT BITSTREAMS FOR LIGHTWEIGHT DECODING OPERATION

SUITABLE FOR MOBILE MULTIMEDIA SYSTEMS

Kemal Ugur1, Jani Lainema1, Antti Hallapuro1, Moncef Gabbouj2
1Nokia Research Center, Tampere, Finland

2 Tampere University of Technology, Tampere, Finland

ABSTRACT

In this work, we propose novel encoder algorithms for the
state-of-the-art video coding standard H.264, to generate
decoder friendly video bitstreams. Using the proposed algo-
rithms, it is possible to generate bitstreams requiring signifi-
cantly less decoding complexity, with negligible effect on
picture quality. This is achieved by using novel algorithms
for mode decision and motion estimation that bias easy-to-
decode motion vectors in a Rate-Distortion optimized fash-
ion. Experimental results show that, more than 15% decod-
ing complexity reduction is achieved with less than a 0.1 dB
penalty on the average video quality. We believe that this
approach has potential in various use cases especially in
mobile multimedia systems, where the video decoder opera-
tion is often dominating the handsets power consumption.

1. INTRODUCTION

H.264/AVC is the state-of-the art video coding standard that
is jointly developed by ISO/MPEG and ITU-T/VCEG study
groups. When compared to the earlier video coding stan-
dards, H.264/AVC achieves significantly better video quality
at similar bitrates. Due to its high compression efficiency
and network friendly design, H.264/AVC is gaining momen-
tum in industry ranging from third generation mobile mul-
timedia services, digital video broadcasting to handheld
(DVB-H) to high definition digital versatile discs (HD-
DVD). H.264 achieves increased compression efficiency
with the expense of increased complexity for both the en-
coders and the decoders. Similar to previous standards, the
complexity of the H.264 encoder is typically much higher
than that of the decoder. There exist several tools that sig-
nificantly reduce the encoding complexity by resulting
slightly lower video quality. These tools include for example
fast motion estimation [1], fast mode decision [2] and dis-
abling the use of some of the motion modes etc. The com-
monality of all these is, they achieve complexity reduction
by performing a complexity-video quality trade-off.

For decoders, the situation is completely different. Since
the decoder is strictly defined by the standard, it is not pos-
sible to have lower complexity decoding by performing a
similar video quality-decoding complexity trade-off. Even
though the decoder has less complexity than the encoder, the
importance of low complexity decoding is equally important
as low complexity encoding, if not more. The reason for that
is, in many applications such as DVD players, digital TV
receivers etc, the end-user equipment has only the decoder
implemented and the decoder block is the only codec related
functional block adding complexity to the system. Even if

the encoder and decoder co-exist in a system, such as in a
video conferencing application, the decoding complexity
could become very important if the encoder and decoder are
running on different hardware platforms.

In this work, we propose several encoding algorithms
that can be used to generate fully H.264 compliant low-
complexity bitstreams, which require significantly less de-
coding complexity than bitstreams created with traditional
encoding algorithms. More specifically, the focus of this
work is to generate bitstreams that would require less
amount of half-pixel and quarter pixel interpolations at the
decoder, as interpolation step consumes most of the decod-
ing processor cycles [3]. This is achieved in two stages. At
the motion estimation stage, the candidate motion vectors
having less decoding complexity are biased using a Lagran-
gian based cost function. At the mode decision stage, the
decoding complexity of each mode is estimated and the
modes with less decoding complexity are favoured using a
similar cost function. Using the proposed methods, the en-
coder can generate low-complexity bitstreams having over
15% less decoding complexity with less than a 0.1 dB pen-
alty on the video quality on average.

This paper is organized as follows; Section 2 provides a
brief analysis of the H.264 decoder complexity and the in-
terpolation scheme. Section 3 presents the proposed motion
estimation and mode decision algorithms to generate the low
complexity bitstreams. Section 4 presents the simulation
environment and the experimental results. Conclusions and
discussions are presented in Section 5.

2. H.264 DECODER COMPLEXITY ANALYSIS

Previous analyses on H.264 decoder complexity show
that the motion compensation is the most computationally
complex step at the decoder, followed by the deblocking
filter process [3][4]. The high complexity in motion com-
pensation is due to interpolation needed to decode motion
vectors with half or quarter pixel accuracy. It was shown
that, for a baseline H.264 decoder, this interpolation step
takes around 39% of the execution time on average, and it
can go up to 44% for some sequences. In the next subsec-
tion, we first analyze the details of the H.264’s interpolation
scheme and present source of its complexity.

2.1 Half-pixel and Quarter-pixel Interpolation

H.264 allows usage of motion vectors with quarter and half
pel precision to increase the accuracy of the motion predic-
tion. For the case of integer motion vectors, the prediction
signal contains the original values of the reference picture;
otherwise the values at non-integer positions need to be in-

II ­ 331­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

terpolated from the original pixels at integer positions. In
Figure 2, the original pixels at integer locations are labelled
by upper-case letters within shaded boxes, other symbols
represent other locations to be interpolated. The samples at
half-pixel locations, b, h, m and s, are interpolated from inte-
ger samples by applying a one dimensional 6-tap FIR filter
on the integer sampled pixels. For example, the sample at
half-pixel location b is obtained from the samples at integer
locations E, F, G, H, I and J given in Figure 1. More specifi-
cally, b is given as

32

)16).5.20.20.5((++−++−= JIHGFE
b (1)

The half-pel sample at position j is interpolated by apply-
ing the 6-tap filter on the 6 samples at half pixel locations
either in vertical or horizontal direction. In other words, in
order to interpolate j, the samples at locations cc, dd,, h, m, ee
and ff must be interpolated first (alternatively, j is obtained
using the samples at locations aa, bb, b, s, gg and hh, which
would yield the same value). Due to the additional need of
interpolating other half-sample locations, the interpolation of
sample at position j has the most complexity among other
half-pixel samples.

Figure 1 H.264 Sub-Pixel Interpolation

The samples at quarter pixel positions are obtained by
averaging two nearest samples at half or integer positions.
Figure 2 illustrates the details of the quarter pixel interpola-
tion scheme employed in the H.264 standard. For each quar-
ter pixel, two values are averaged by up-rounding. In Figure
2, quarter pixels are denoted by letters a, c, d, e, f, g, i, k, n, p,
q, r and are placed within shaded boxes. Each quarter-pixel is
connected to two other half or integer pixels that will be used
to calculate the corresponding quarter pixel. For example, in
order to interpolate quarter-pixel d, the integer pixel G and
the half pixel h must be averaged. So, the half-pixel h must
be interpolated first using the 6-tap filter, in order to calculate
the value of quarter pixel d. Therefore, the quarter pixels, for
which the half pixel j is used for averaging, have the most
complexity among other quarter pixel locations (i.e. the quar-

ter pixels at locations f, i, k, q have the highest interpolation
complexity).

G H

M N s

j

b

mh

d

n q

f

i

p

e

a c

g

 k

r

Figure 2 Quarter Pixel Interpolation Scheme

3. ENCODING FOR LOW COMPLEXITY

DECODING

In the previous section, it was shown that the interpolation
complexities of different quarter and half pixel locations are
not the same. Therefore, the decoding complexity depends
on both the horizontal and vertical sub-pixel components of
the motion vector. For example, if a motion vector has inte-
ger values for both its horizontal and vertical components,
the decoder does not need to perform any interpolation to
obtain the prediction signal, and hence have minimal com-
plexity. However, the complexity would increase, if the mo-
tion vector points to locations that are difficult to interpolate,
such as the half pixel location j, or any quarter-pixel location
that requires the value of j.

We first analyzed the amount of operations needed to in-
terpolate each sub-pixel location, using a highly optimized
H.264 decoder implementation [4]. Using this data, we
approximated the interpolation complexity of each motion
vector with different horizontal and vertical sub-pixel accu-
racies. Figure 3 presents the approximate interpolation com-
plexities required to decode motion vectors with different
accuracies. The reader is referred to [4][5] for a detailed
analysis of interpolation complexity.

0 1 1 1

1 2 4 2

1 4 4 4

1 2 4 2

No Filtering Required

Requires one 6-tap
Filtering

Requires two 6-tap
Filterings

Requires more than
two 6-tap Filterings

Horizontal motion vector
accuracy

V
e

rt
ic

a
l
m

o
ti
o

n
 v

e
c
to

r

a
c
u

ra
c
y

Integer
Pixel

Figure 3 Approximate Interpolation Complexities of Mo-
tion Vectors with different sub-pixel components.

In Figure 3, each location is represented by a box and the
numbers in each box indicate the approximate interpolation
complexity required to decode the motion vector, larger
number indicating a higher complexity. For example, if the
motion vector has integer values at both directions, the in-
terpolation complexity is zero. However, if the motion vec-

II ­ 34

tor points to the half-pixel location just next to the integer
pixel in horizontal direction (indicated as b in Figure 2), the
interpolation complexity increased to 1, as the decoder
needs to perform an additional 6-tap filtering.

We use this approximate complexity data to generate bit-
streams that have more motion vectors pointing to easy-to-
interpolate locations, in order to reduce the decoding com-
plexity. This is achieved in two stages. At the motion estima-
tion step, the candidate motion vectors having less decoding
complexity are biased using a Lagrangian based cost func-
tion. At the mode decision step, the decoding complexity of
each mode is estimated and the modes with less decoding
complexity are favoured using a similar cost function. The
details of these stages are presented in the next subsections.

3.1 Motion Estimation

At the motion estimation stage, the reference picture is
searched for the candidate motion vectors, and the motion
vector that results in the best prediction is chosen. The con-
ventional motion estimation that is implemented in the cur-
rent H.264 test model chooses the motion vector that mini-
mizes the following cost function.

)(.))(,(),(mmm RcsSADJ motionmotion λλ += (2)

with m = (mx, my)
T being the motion vector, and λmotion being

the Lagrange multiplier The first term of the above cost func-
tion is the distortion term and it is given as the Sum of Abso-
lute Difference (SAD) between the original signal s, and the
reference signal c(m). The rate term R(m) represents the
number of bits that would be used to code the motion vector
m.

In order to favour motion vectors with less interpolation
complexity and penalize ones with higher complexity, we
modify the conventional cost function, and use the one indi-
cated as in Equation 3.

)(.),(),,(' mmm MEMECmotionMEmotion CJJ λλλλ += (3)

The proposed cost function has an additional term,
CME(m), that represents the decoding complexity of the can-
didate motion vector, m. CME(m) is basically a two dimen-
sional array and it is calculated using the data given in Figure
3. For example, if the candidate motion vector has integer-
pixel accuracy in both horizontal and vertical directions, then
CME(m) is zero. Similarly, if m points to location j, the value
of CME(m) is 4. The value of CME(m) is further multiplied by
the Lagrangian term λMEC, to adjust the complexity–video
quality trade-off. Larger the value of λMEC, less decoding
complexity the resulting bitstream has, with a higher penalty
on the coding efficiency.

3.2 Mode Decision

After the motion estimation is performed for all candidate
INTER modes, the coding results of the modes are com-
pared and the one that minimizes the following Lagrangian
cost function is chosen.

),,(.),(),(McsRrsSSDMJ MODEMODE λλ += (4)

with r being the reconstruction signal for the given mode, M,
and λMODE is the Lagrangian multiplier. M is referring to one
of the candidate INTER modes as illustrated in Figure 4.

Figure 4 INTER modes supported by H.264 standard

The first term of the above cost function is the distortion
term, and it is given as the Sum of Square Difference (SSD)
between the original and the reconstructed signal. R(s,c,M)
is the rate term that represents the number of bits used to
code the mode, M. In order to favour the INTER modes with
less interpolation complexity, we modify Equation 4, and
use the following cost function:

)(.),(),(
' MCMJMJ MODEMDCMODEMODE λλλ += (5)

Similar to the proposed cost function used in Motion Es-
timation, Equation 5 has the additional term CMODE(M)
representing the decoding complexities of candidate modes.
CMODE(M) is the sum of all the interpolation complexities for
all motion vectors involved in the candidate mode, and is
illustrated below in Equation 6.

=
=

MVsofnum

i

iMEMODE CMC
__

1

)()(m (6)

where num_of_MVs refers to the number of motion vectors
used in the given mode. For example, if the candidate mode
is INTER_8x8, in which the macroblock is divided into four
blocks and each block has its own motion vector, the value of
num_of_MVs is four. CMODE(M) is multiplied by λMDC to adjust
the complexity-quality trade-off at the mode decision stage.
The values for λMDC and λMEC affect the encoding performance
and should be careful selected. Results of our simulations
suggest that values 2, 50 for λMDC and λMEC respectively result
in the best complexity-quality trade-off. The effect of chang-
ing the values of Lagrangian parameters, λMEC and λMDC, could
be observed more in the experimental results.

It should be noted that, conventional cost function is used
in the proposed method when deciding between INTER and
INTRA modes.

4. EXPERIMENTAL RESULTS

In order to test the performance of our scheme, we first gen-

erated the low-complexity bitstreams for different test se-
quences, using the methods described above. Then using a

highly optimized H.264 decoder implementation on an

ARM-11 platform, we decoded all the bitstreams and re-

corded the required number of processor cycles for each one.

We repeated the same process using the conventional en-

coder, with the same encoder settings, to get the reference

RD Optimized bitstreams.

Figure 5 presents the results for the test sequence Fore-

man. When compared to the RD Optimized bitstream, the low
complexity bitstream has 14% less decoding complexity. The

16x16 16x8 8x16 8x8

8x4 4x8 4x4

16x16 Modes

8x8 Sub_Modes

8x8

II ­ 35

penalty on video quality, to achieve lower complexity decod-

ing is 0.1 dB. We also present the decoded pictures from both

the bitstreams in Figure 6. It is observed that the low com-
plexity bitstream has practically the same visual quality as the

RD Optimized one.

As mentioned before, the values of λMDC and λMEC are cho-
sen as 2, 50 respectively. However, our method allows one to

decrease the decoding complexity more by allowing a higher

penalty on the coding efficiency. This could be achieved by

using larger values for λMDC and λMEC.. In order to demonstrate
the effect of changing those values, we repeated the above
experiment with λMDC being 4 instead of 2, to favour modes
having less decoding complexity, and generated the lower
complexity bitstream. As it is seen in Figure 7, the decoding
complexity is decreased even more, with slightly less coding
efficiency.

5. CONCLUSIONS

In this work, we proposed novel encoder algorithms that are
used to generate H.264 compliant decoder-friendly bit-
streams. Using the proposed algorithms, it is possible to
generate bitstreams requiring significantly less decoding
resource consumption, with negligible effect on picture
quality. This is achieved by using novel algorithms for mode
decision and motion estimation that bias easy-to-decode
motion vectors in a Rate-Distortion optimized fashion. It
was shown that, more than 15% decoding complexity reduc-
tion is achieved with less than a 0.1 dB penalty on average
video quality. It was also shown that proposed methods al-
low further complexity reduction, by having slightly less
picture quality.

It is believed that, this approach has many important use
cases in mobile multimedia systems, where the video de-
coder operation is often dominating the handsets power con-
sumption.

REFERENCES

[1] Peng Yin; Tourapis, H.-Y.C.; Tourapis, A.M.; Boyce, J. ,
“Fast mode decision and motion estimation for JVT/H.264”,
in ICIP 2003, vol.3, pg: 853-856, 4-17 Sept. 2003
[2] J. Lee; B. Jeon, "Fast mode decision for H.264," IEEE
International Conference on Multimedia and Expo, 2004.,
vol.2, no.pp. 1131- 1134 Vol.2, 27-30 June 2004
[3] Horowitz, M.; Joch, A.; Kossentini, F.; Hallapuro, A.,
”H.264/AVC baseline profile decoder complexity analysis”,
in CSVT, IEEE Trans. on, vol.13, pg: 704- 716, July 2003
[4] Lappalainen, V.; Hallapuro, A.; Hamalainen, T.D., ”Com-
plexity of optimized H.26L video decoder implementation”,
CSVT, IEEE Trans. on, vol.13, pg: 717- 725, July 2003
[5] Karczewicz, M.; Hallapuro, A.; “Interpolation solution
with low encoder memory requirements and low decoder
complexity.”, VCEG-N31, 24-27 Sept. 2001.

Decoding Complexity Drop (%)

10.00%

12.00%

14.00%

20 30 40 50
Bitrate (kbps)

Foreman QCIF 15Hz

27

29

31

33

20 30 40 50

Bitrate (kbps)

P
S

N
R

 (
d

B
)

RD Optimized

Low Complexity

Figure 5 Analysis of the proposed method

Figure 6 Reconstructed Frame # 89 Foreman
a: RD Optimized Reference b: Low Complexity

Decoding Complexity Drop (%)

10.00%

12.00%

14.00%

16.00%

18.00%

20 30 40 50
Bitrate (kbps)

Low Complexity
Low er Complexity

Foreman QCIF 15Hz

27

29

31

33

20 30 40 50

Bitrate (kbps)

P
S

N
R

 (
d
B

)

Low Complexity

Low er Complexity

Figure 7 Effect of Changing λMDC

II ­ 36

