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ABSTRACT

The optimization of a quadratic objective function with lin-
ear constraints is useful for interpolation purposes. This for-
mulation may be employed to derive an initial prediction in
the lifting scheme domain in order to construct wavelet trans-
forms. We modify the formulation to design final prediction
and update lifting steps. The linear constraints relate wavelet
bases and coefficients with the underlying signal. The ob-
jective function is the detail signal energy for the prediction
lifting design and the gradient of the approximation signal for
the update. To report concrete results and the power of the ap-
proach, we derive update steps using an auto-regressive image
model that show better performance than the 5/3 wavelet for
the compression of several image classes.

1. INTRODUCTION

Wavelet transforms have widely shown their usefulness in im-
age compression. The lifting scheme [1] is a method to create
biorthogonal wavelet filters from other ones. Basically, lifting
consists of prediction and update steps. We briefly introduce
lifting in section 2.

The prediction step extracts the redundancy existing in
the odd samples from the even samples. Interpolative func-
tions are a reasonable choice as initial prediction lifting step.
An example is the family of Deslauriers-Dubuc interpolating
wavelets, which are constructed via lifting using two steps.
An interesting adaptive quadratic interpolation method is pro-
posed in [2]. We outline it in section 3. The interpolation
signal is found in [2] by means of the optimal recovery the-
ory. We have observed that the problem statement may be
reformulated as a simple minimization of a quadratic func-
tion with linear equality constraints. This insight provides
all the resources and flexibility coming from the convex opti-
mization theory to solve the problem. Furthermore, the initial
problem statement may be modified in many different ways
and convex optimization theory still offers solutions.

In this paper, we employ the new found flexibility to de-
sign lifting steps with different criteria than the usual vanish-
ing moments and spectral considerations. First, linear con-

straints are changed. Transformed coefficients are the inner
product of wavelet basis vectors with the signal data. These
products are new linear constraints introduced in the formula-
tion. This allows to construct initial prediction steps, as well
as the subsequent predictions for which the spatial interpola-
tion interpretation is not straightforward. Section 4 explains
this point. Second, the objective function is modified to con-
struct the gradient-minimized update steps in section 5. This
case is further developed to offer the practical results in sec-
tion 6. Auto-regressive image models of first and second or-
der are used to derive specific update steps that successfully
compare to the 5/3 wavelet for image compression purposes.

Notation: boldface upper-case letters denote matrices, bold-
face lower-case letters denote column vectors, upper-case ital-
ics denote sets, and lower-case italics denote scalars. Indexes
are omitted for short when they are clear from the context.

2. LIFTING SCHEME

Lifting scheme comprises the following parts:

(a) Lazy wavelet transform of the input data x into two
subsignals:

– An approximation or low-pass signal l0 formed
by the even samples of x.

– A detail or high-pass signal h0 formed by the odd
samples of x.

(b) Lifting steps, i = 1..L.

– Prediction Pi of the detail signal with the li−1

samples (1).
– Update Ui of the approximation signal with the hi

samples (2).

(c) Output data: the transform coefficients lL and hL.

hi[n] = hi−1[n] − Pi(li−1[n]) (1)

li[n] = li−1[n] + Ui(hi[n]) (2)

Lifting steps improve the initial lazy wavelet transform prop-
erties. Eventually, input data may be any other wavelet trans-
form with some properties we want to improve. Several pre-
diction and updates (L > 1) may be concatenated in order to
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reach the desired properties for the wavelet basis. A multi-
resolution decomposition of x (3) is attained by plugging the
approximated signal lL into another lifting step block, obtain-
ing l(2) and h(2). The process is iterated on l(k).

x → (l, h) → (l(2), h(2), h) → . . . →
→ (l(K), h(K), h(K−1), . . . , h) (3)

3. QUADRATIC INTERPOLATION

An interpolation method based on the quadratic signal class
determined from the local image behavior is presented in [2].
The quadratic signal class is determined by a set of patches
S = {x1, . . . , xm} representative of the local data. Patches
may extracted from an up-sampling and filtering of the image
or from other images. Patches are high-density, i.e., they have
the same resolution as the interpolation. The quadratic class
is defined by a matrix Q for which the ellipsoid

xT Qx ≤ ε (4)

must be representative of the training set S, i.e., Q must be
a matrix such that when an image patch y is similar to the
vectors in S, then (4) holds for y. Matrix S is formed by ar-
ranging the image patches in S as columns: S = (x1 . . .xm).

The image patch y is imposed to be a linear combination
of the training set S through a column vector c:

Sc = y. (5)

Vectors in S are similar among them and y is similar to
them when c has small energy,

‖c‖2 = cT c = yT (SST )−1y = yT Qy ≤ ε,

where Q is the pseudo-inverse of SST . In this sense, good
interpolators y for the quadratic class determined by Q are
expanded with the weighting vectors c of energy bounded by
some ε. Once the high density class S is determined, the op-
timal interpolated vector x can be simply seen as the solution
of (6), instead of using the optimal recovery theory as in [2].
The solution of (6) is the minimum energy c subject to the
patches linear constraint (5). This interpretation is very use-
ful for the lifting design covered in the subsequent sections.

minimize
x,c

‖c‖2

subject to Sc = x
(6)

There is more information that may be used to improve
the solution. Previous knowledge about x is available. Typ-
ically, one of every two elements of x are already known in
the interpolation of h0 with the samples l0. It may be also
known that the original high density pixels have been aver-
aged before a decimation by two. Both cases impose a linear
constraint on the data, denoted by AT x = b. In the first case,
the columns of matrix A are formed by vectors ei, being the

one located at the position of the known sample. The respec-
tive position of vector b has the sample value. An illustrative
example for the second case is the following. Assume that the
pixel value is the average of four high density neighbors, then
there would be a 1/4 at each of their corresponding positions
in a column of A. Whatever the linear constraints, they are
included in (6) to reach the formulation

minimize
x,c

‖c‖2

subject to Sc = x
AT x = b.

(7)

The solution of this problem is

x� = SST A(AT SST A)−1b, (8)

which is the least-square solution for the quadratic norm de-
termined by SST and the linear constraints AT x = b. Taking
the expectation in (8) the formulation is made global. In this
case, the quadratic class is determined by the correlation ma-

trix R = E

[
SST

]
. The equivalent global formulation of (7)

is
minimize

x
xT R−1x

subject to AT x = b
(9)

and the corresponding solution is

x� = RA(AT RA)−1b. (10)

With this common formulation, local adapted and global
interpolative predictions may be constructed and the avail-
able knowledge about the input signal may be incorporated by
adding constraints to refine the result. In the next section, the
linear constraints in (9) are modified to include the transform
coefficients inner products in order to construct final predic-
tion steps.

4. LINEAR PREDICTION STEP DESIGN

A transform coefficient i is the inner product of a wavelet or
scaling basis vector wi with the input signal. Using this no-
tation, coefficients h[n] and l[n] arise from h[n] = wT

h[n]x
and l[n] = wT

l[n]x, respectively. A second prediction step P2

predicts a coefficient h1[n] using a set of neighboring approx-
imate samples, which are denoted by l1[n] with some notation
abuse. The operators are linear and so, we have

h2[n] = h1[n]−ĥ1[n] = h1[n]−P2(l1[n]) = h1[n]−pT
2 l1[n].

The approximate coefficients linear constraints are included
in the formulation. Therefore, matrix A columns are formed
by wl1[n], which are the basis vectors of each neighbor l1[n]
employed for the prediction. The independent term is b =
l1[n]. According to the established notation and constraints,
the predicted value ĥ1[n] is found by using the optimal inter-
polation vector (10),

ĥ1[n] = wT
h1[n]x

� = wT
h1[n]RA(AT RA)−1b = pT

2 b,
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from which the optimal prediction filter is

p�
2 = (AT RA)−1AT Rwh1[n]. (11)

Interestingly, this filter (11) is equivalent to the one in [3]
that minimizes the MSE of the second prediction, that is,

p�
2 = arg min

p2
f0(p2) = E[(h1[n] − ĥ1[n])2]. (12)

However, the convex optimization theory approach per-
mits modifications that allow the inclusion of more knowl-
edge in the formulation, with the use of other objective func-
tions (as the update designs of section 5) or with the addition
of constraints. For instance, equality and inequality linear
constraints on the smoothness of the signal or on its lower
and upper bounds may be included. In general, prediction
step is easier to design than the update because the spatial in-
terpretation of the prediction filtering is more direct. For this
reason, we devote the rest of the paper to the design of update
steps and to report the results obtained from their application.

5. LINEAR UPDATE STEP DESIGN

Previous formulation with an appropriate objective function
is applied to design update lifting steps. The next two subsec-
tions develop two different objective functions to construct
update steps that are used to perform the experiments in sec-
tion 6.

5.1. First design

Coefficient l[n] is updated with l̃[n] = uT b. The objective
function is set to be the l2-norm of the substraction between
the updated coefficient l[n] + l̃[n] and the set I of the neigh-
boring scaling coefficients. This objective function leads to
a smooth approximate signal that helps the prediction to per-
form better in the next resolution level. Formally stated, the
goal is to find u such that

u� = arg min
u

f0(u),

with

f0(u) = E

[∑
i∈I

(l[i] − (l[n] + l̃[n]))2
]

, (13)

which is equivalent to

f0(u) =
∑
i∈I

E

[
(wT

l[i]x − wT
l[n]x − uT b)2

]
, (14)

where now b = h1[n]. Expression (14) is developed. Then
differentiated with respect to u. After that, the linear con-
straints AT x = b are introduced and the definition of corre-
lation matrix used to reach the expression

∇uf0 = 2
∑
i∈I

uT AT RA + wT
l[n]RA − wT

l[i]RA.

Let denote the mean of the neighboring approximate sig-
nal basis vectors employed to update as

wI =
1
|I|

∑
i∈I

wl[i],

where |I| denotes the cardinal of the set I. Equalling the
derivative to zero, the optimal update filter minimizing the
local gradient is found to be

u� = (AT RA)−1AT R(wI − wl[n]), (15)

and the optimally updated coefficient is

l1[n] = l0[n] + (wI − wl[n])T RA(AT RA)−1b. (16)

Again, the interpretation relying on the optimal interpola-
tion of x, l1[n] = l0[n] + u�T b = l0[n] + (wI −wl[n])T x�,
is practical because it allows the use of additional knowledge.
A related construction is developed in the next subsection.

5.2. Second design

An additional consideration on the set of approximation sig-
nal neighbors I may be included to the previous gradient-
minimization design. As each sample in I is also updated,
it is interesting to consider the minimization of the gradient
of l[n] + l̃[n] with respect to the updated samples l[i] + l̃[i],
i ∈ I, through a still unknown update filter. To this goal, the
objective function (13) is modified in order to find the optimal
update with this criterion:

f0(u) = E

[∑
i∈I

((l[i] + l̃[i]) − (l[n] + l̃[n]))2
]

.

The objective function is expanded taking into account the
updated coefficients bases w̃l[i] = wl[i] + Al[i]u, being Al[i]

the constraint matrix relative to the position of sample l[i] and
A = Al[n]. The algebraic manipulation is similar to the pre-
vious case. The optimal solution is described by expression

u� = M−1(AT R(wI − wl[n]) + A
T

IRwl[n] − bI), (17)

being
M = AT R(A − 2AI) + RI ,

where the mean of the different products of the bases and ma-
trices are denoted by

AI =
1
|I|

∑
i∈I

Al[i],

RI =
1
|I|

∑
i∈I

AT
l[i]RAl[i],

bI =
1
|I|

∑
i∈I

AT
l0[i]

Rwl0[i].

Equation (17) is very simple to compute in practice. The
only differences w.r.t. (15) are the additional terms concern-
ing the mean of the neighbors basis vectors, which are known.
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5/3 wavelet AR-1 model
Synthetic 3.832 3.508

SST 3.252 3.123
Mammography 2.349 2.358

Table 1. Compression results with Jpeg2000 using the stan-
dard 5/3 wavelet and the proposed optimal update with the
AR-1 model for the synthetic, mammography, and SST im-
age classes. Results are given in bits per pixel.

6. EXPERIMENTS

The framework developed in this paper allows the construc-
tion of 2-D nonseparable filters. However, for the experi-
ments we restrict ourselves to 1-D separable decompositions.
Concretely, we derive update steps for the prediction p1 =
( 1/2 1/2 )T of the 5/3 wavelet used for lossy-to-lossless
compression in the Jpeg2000 standard [4]. The 5/3 wavelet
update is u1 = ( 1/4 1/4 )T . For fair comparison, we also
employ two neighbors for the update and so, in practice this
application simply reduces to propose a coefficient different
from 1/4 for the update filter. Even in this simple case, the
proposal attains noticeable improvements.

In the first experiment, a second order auto-regressive model
(AR-2) is used to determine the local image behavior. For a
subset of the AR-2 parameters values, the resulting optimal
update coefficient (17) coincides with the 5/3 update, but not
for other possible values. Figure 1 highlights this fact. It re-
lates the update coefficient with the AR-2 parameters. There-
fore, for many images the usual update is far from being op-
timal in the sense of (17). An adaptive update filter is con-
structed by estimating the AR-2 parameters for each line in
an image and using the filter given by the second design (17).
To assess the performance, the energy of the coarser level de-
tail signal h(2)

1 is computed. This comes from the assumption
that a good approximation signal for compression provides
small prediction energy. For a wide set of natural images, like
Lenna and Cameraman, the energy is up to 25% smaller for
the adaptive optimal update step w.r.t. the 5/3 update.

The second experiment derives filters applicable to a more
global setting. The AR model of first order is estimated for
three image classes and so, each model is useful for a whole
corpus of images instead of being local. 15 synthetic images,
15 mammography and 6 sea surface temperature (SST) im-
ages are used. The correlation matrix is determined by the
AR-1 parameter and then it is plugged into the first design
(15) to obtain an update filter used for all the images in the
class. Image compression is performed with a four resolu-
tion level decomposition within the Jpeg2000 coder environ-
ment. Numerical results appear in table 1 compared to the 5/3
wavelet. For the mammography, compression slightly wors-
ens, maybe due to the background statistics, but for the two
other classes, the proposal results improve those of the 5/3.
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Fig. 1. Six level-sets of a function of the update coefficient
with respect to the AR-2 parameters. The function is the
absolute value of the update coefficient minus 0.25 (the 5/3
wavelet update coefficient). Thus, the resulting filter is very
similar to the 5/3 in the dark areas and different in the light
areas. The two circles depict the mean AR-2 parameters for
the synthetic and SST image classes.

7. CONCLUSIONS

The relation between interpolation and lifting design has been
highlighted. The common setting is employed to derive opti-
mal lifting steps with different criteria. We show two different
ways to obtain useful updates and apply the results to a con-
crete case with success. Both, the local adaptive and the fixed
update provide encouraging results. Furthermore, from the
developed viewpoint, it is demonstrated that the widespread
5/3 wavelet is not optimal for many images. Despite of these
examples, the framework offers additional flexibility that de-
serves to be deeply studied and employed in all its extension
in a future work.
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