
FAST AND EFFICIENT NORMAL MAP COMPRESSION

BASED ON VECTOR QUANTIZATION

T. Yamasaki and K. Aizawa

Department of Frontier Informatics, Graduate School of Frontier Sciences

The University of Tokyo

ABSTRACT

Normal maps play an important role in realistic 3D image

rendering to express pseudo roughness of the surface with

small amount of polygon data. In this paper, a fast and effi-

cient normal map compression algorithm is proposed based

on vector quantization and entropy coding. Using the strong

correlation among x, y, and z components of normal maps

owing to the unity condition, compression ratio has been

made much better than conventional approaches. In addition,

the encoding time has been made reasonable by considering

the distribution of the data and employing inner product in

nearest-neighbor search instead of Euclidian distance taking

advantage of the unity condition of the training data.

1. INTRODUCTION

As more realism and visual complexity of scenes are re-

quired in 3D computer graphics, expressing 3D objects only

by polygons has become problematic in terms of data stor-

age and computational cost. In this regard, a number of

elaborated texture mapping techniques have been developed

such as bump mapping [1], displacement mapping [2], re-

flection mapping [3], relief mapping [4], and so forth. Bump

mapping, which is nowadays extended to normal mapping

[5] to express more detailed and complex texture, is espe-

cially a key technology to enhance the roughness and wrin-

kles of the surface with small amount of polygon data.

Although normal mapping was developed aiming at re-

ducing the amount of polygon data, using high resolution

normal maps for every surface of the whole of 3D objects

cause a lack of video memory resources and a storage prob-

lem again. In this regard, some of the general-purpose tex-

ture compression algorithms have been applied to normal

map compression [6]. In addition, a dedicated normal map

compression algorithm called 3Dc has been implemented

onto high-end Graphics Processing Units (GPU's) [7]. We

have also been developing adaptive 3Dc algorithm [8] and

efficient normal map compression algorithms using standard

2D image compression techniques such as JPEG and

JPEG2000 [9][10].

However, such algorithms handle normal maps as 2D

images and strong spatial correlation is assumed. Normal

maps are usually more random and have less spatial correla-

tion than 2D natural images, resulting in poor compression

performance. For efficient compression, new data structure

optimized for normal map data distribution and a dedicated

compression algorithm is required.

The purpose of this paper is to develop a fast and effi-

cient normal map compression algorithm using vector quan-

tization (VQ) and Huffman encoding based on the strong

correlation among x, y, and z components of normal maps

owing to the unity condition. In this paper, each normal vec-

tor component (x, y, z) is handled as a training vector. Al-

though the vector dimension is quite small, much better

compression rate has been achieved. In addition, the encod-

ing time has been made reasonable by considering the distri-

bution of the data and employing inner product in nearest-

neighbor search instead of Euclidian distance taking the

unity condition of the training data into account.

2. NORMAL MAPS

Normal maps are the maps of three-dimensional vectors

which represent directions of normal vectors of 3D object

surfaces. Therefore, normal maps can be simply expressed

as RGB bitmaps, in which the [-1, 1] range of normal vec-

tors is mapped to [0, 255] based on the equation as de-

scribed in the following (therefore, xyz values are discrete):

() ()2
, , , , 1

255
= ⋅ −x y z R G B (1)

where (x, y, z) and (R, G, B) represent element values of

each pixel in a normal map and their corresponding full

color pixel values, respectively. Examples of normal maps

are shown in Fig. 1.

 (a) (b)

Fig. 1. Examples of normal maps: (a) wall texture; (b) tile

texture. The size is 512x512.

II 9142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

In addition, the length of normal vectors is fixed at one

in order to simplify the weight factor calculation of color

and luminance into inner product operation between the

normal vector and the luminance vector:
2 2 2
 1x y z+ + = (2)

Here, z component is always equal to or greater than zero

because normal vectors are in the direction of outer side of

the surface:

1 1, 1 1, 0 1x y z− ≤ ≤ + − ≤ ≤ + ≤ ≤ + (3)

3. NORMAL MAP COMPRESSION

3.1. Vector Quantization Based on Data Distribution

In this paper, strong correlation among x, y, and z compo-

nents are utilized. As described in Section 2, the length of

normal vectors is normalized to one and therefore normal

vectors are distributed on a unit sphere. In addition, z com-

ponents are usually close to one. Therefore, distribution of

normal vectors is quite limited and efficient compression

will be achieved by VQ. The code indices are encoded by

Huffman encoding for further compression. The codebook is

designed for each normal map for better compression per-

formance. Therefore, efficient training algorithm has been

developed as described below for fast compression.

3.2. Training Efficiency Enhancement

Codebook training is computationally expensive in VQ algo-

rithm. Therefore, the training efficiency is enhanced by the

following techniques.

Distribution of normal vectors is quite limited and thus

signal space of normal maps is very small. In addition, the

dimension of the training vectors is only three. Therefore, a

lot of identical vectors exist in training vectors. In Fig. 2,

histograms of normal vector distribution are demonstrated.

Frequency was normalized by the number of training vectors.

In addition, z components are omitted since it can be re-

stored using Eqs. (2) and (3). It is demonstrated that the

number of unique vectors are small. For instance, the num-

bers of unique training vectors are 5776 and 15738 for Figs.

1(a) and 1(b), respectively, which is much smaller than the

total number of training vectors: 262144 (512x512). There-

fore, in our algorithm, unique vectors are firstly extracted

and the number (i.e., frequency) of each unique vector is

counted. The frequency table is utilized as weight factors for

distortion calculation in the training phase. The detailed al-

gorithms are shown as pseudo codes in Tables 1 and 2. It is

shown that the number of for loops is drastically reduced

and fast codebook generation is possible.

Due to the unity condition, nearest-neighbor code vector

search for each training vector is equivalent to searching for

such a code vector that maximizes the inner product with the

training vector. This corresponds to the special case of gain-

shape VQ [11]. The computational cost of inner production

is smaller than that of Euclidean distance, thus enabling fur-

ther speeding-up in training.

-1

0

1 -1

0

1

 0

 0.02

 0.01

x

y

N
o
rm

al
iz

ed
 F

re
q
u
en

cy

(a)

-1

0

1 -1

0

1

 0

 0.02

 0.01

x

y

N
o

rm
al

iz
ed

 F
re

q
u

en
cy

0.720

(b)

Fig. 2. Histograms of (x, y, z) vectors in normal maps: (a)

wall texture; (b) tile texture.

Table 1. Conventional training algorithm for VQ.
generate a training vector set from a M*N normal map

generate a seed code vector

while(codebook size <= desired size}){

split the code vectors

 while(distortion is not minimum){

 for(i=0;i<M*N;i++){

 search for the nearest-neighbor (NN) code vector

 dist.=dist. + dist.(i-th training vector, NN code vector)

 }

 re-generate codebook

 }

}

Table 2. Proposed algorithm to decrease training time.
generate a training vector set from a M*N normal map

extract unique training vecs and generate the histograms of them

generate a seed code vector

while(codebook size <= desired}){

split the code vectors

 while(distortion is not minimum){

 for(i=0;i<# of unique training vectors;i++){

 search for the nearest-neighbor (NN) code vector

 dist.=dist. + (freq. of the training vector) *dist.(i-th training

vector, NN code vector)

 }

 re-generate codebook

 }

}

II 10

3.3. Code Vector Update

Code vector updating is usually conducted by taking the

average of all the training vectors in the same cluster. In

normal map compression, the unity condition described in

Eq. (2) needs to be considered:

()
, ,

2 2 2

max

1

m m m

i m i m i m
x y z

i S

m m m

H x x y y z z

subject to x y z

∈

= ⋅ + ⋅ + ⋅

+ + =
 (4)

where S, (xi, yi, zi), and (xm, ym, zm) represent a set of vectors

in a cluster, training vectors in a set S, and a code vector,

respectively. By introducing Lagrangian method of unde-

termined multipliers, the code vector can be calculated as

()
() () ()

()
2 2 2

1
, , , ,

m m m i i i

i i i

x y z x y z

x y z

= ⋅
+ +

This operation is equivalent to summing all the training vec-

tors in a set S and normalizing the vector length to one.

4. EXPERIMENTAL RESULTS

In the experiments, a custom-made personal computer with

Pentium 4 (3.2GHz) and 2GB memory was utilized. All the

algorithms were implemented with Microsoft Visual C++

ver. 7.0 with Ox and G7 options. In our VQ-based compres-

sion, LBG algorithm [12] was utilized with modifications in

code vector training as explained in Section 3. The experi-

ments were carried out using about 300 normal maps with

the size of 512x512, which were randomly selected from

“Bump Texture Library [13].”

Fig. 3 shows the average power of DCT coefficients of

all the 8x8 sub-blocks using a standard 2D image (Lenna)

and two kinds of normal maps. Luminance (Y) and x compo-

nents were analyzed for Lenna and the normal maps, respec-

tively. It is observed that more than ten times of power is

contained in high-frequency region in normal maps, showing

that conventional 2D image compression algorithms are not

eligible for normal map compression.

Compression performance of our proposed algorithm

and conventional approaches is demonstrated in Fig. 4. In

the original 3Dc algorithm [7], scalar quantization based on

block truncation coding algorithm [14] is employed for 4x4

blocks and the quantization level is fixed at eight (three bits).

However, in the experiment, the quantization level was var-

ied from two levels (one bit) to 16 levels (four bits) for com-

parison. In our proposed algorithm, codebook size and

Huffman table are also included in the bit rate calculation.

The quality of the compressed normal maps were evaluated

by averaging mean square errors (MSE’s) of x, y, z compo-

nents and calculating peak signal noise ratio (PSNR).

Strictly speaking, normal maps are not “images.” Therefore,

the quality of compressed normal maps needs to be analyzed

by rendering 3D images using them. However, it has been

demonstrated that the PSNR’s of the compressed normal

maps and those of the rendered images using them are al-

most the same [15]. As can be seen in Fig. 4, our algorithm

is much better than the others in terms of compression ratio.

Our proposed algorithm yielded better compression ratio to

more than 80% of the normal maps in the quality of 35dB

and higher. Although it can be observed that the proposed

VQ-scheme is outperformed by JPEG and JPEG 2000 in the

very low bit-rate range, such low-bit normal maps below

35dB would result in significant noise and artifacts in the

rendered images. Therefore, the proposed algorithm is eligi-

ble for practical usage.

The normal maps compressed at 4 bpp using various al-

gorithms are shown in Fig. 5. It is observed that our algo-

rithm gives much better visual quality than the 3Dc [7].

In Fig. 6, the average encoding/decoding time of the

300 normal maps is demonstrated. The encoding time for 64

codebook size was 4.8s for conventional VQ, 0.33s after

introducing unique vector extraction, and 0.32s after intro-

ducing inner-product-based nearest neighbor search. For

1024 codebook size, the processing time was 52.6s, 1.19s,

and 0.57s, respectively. It has been demonstrated that the

larger the codebook size becomes and the more nearest

neighbor search is required, the faster the proposed algo-

7 15 23 31 39 47 55 63

1e+1

1e+0

1e+2

1e+3

1e+4

1e+5

ID of zig-zag scan

P
o

w
er

 o
f

D
C

T
 C

o
ef

fi
ci

en
ts

Lenna (Y)

Rocky (x)
Tile (x)

Fig. 3. DCT coefficients of standard image (Lenna) and

normal maps.

20 4

10

6 8 10 12 14 16

20

30

40

50

60

Bit rate (bpp)

P
S

N
R

 (
d

B
)

3Dc

Optimized JPEG

JPEG2000

Adaptive 3Dc

VQ
(This Work)

(a)

20 4

10

6 8 10 12 14 16

20

30

40

50

60

Bit rate (bpp)

P
S

N
R

 (
d

B
)

Optimized JPEG
JPEG2000

Adaptive 3Dc

3Dc

VQ (This Work)

(b)

Fig. 4. PSNR’s of compressed normal maps: (a) wall tex-

ture; (b) tile texture.

(5)

II 11

rithm performs. Decoding time was about 0.05s and almost

constant for any codebook size.

Fig. 7 shows the encoding/decoding time comparison.

Since the codebook needs be designed for each normal map,

the training time is also contained in our method. The encod-

ing time has been made reasonable and practicable as com-

pared to the other algorithms. In addition, VQ-based algo-

rithm is known to be very fast in decoding. This is an impor-

tant advantage because decoding is conducted at the user

side and executed much more times than encoding.

5. CONCLUSIONS

In this paper, an efficient compression technique for normal

maps has been developed using vector quantization and

Huffman encoding. While conventional normal map com-

pression algorithms regarded normal maps as 2D images and

to tried to compress them by reducing the two-dimensional

spatial correlation, our approach is based on the strong cor-

relation among (x, y, z) components of normal maps. Since

most of normal map data are random and have little spatial

correlation, our approach yielded much better compression

performance than the conventional approaches. In addition,

a fast codebook training algorithm for vector quantization

has been developed by considering the distribution of the

data and employing inner product in nearest-neighbor search

instead of Euclidian distance taking advantage of the unity

condition of the training data. As a result, the encoding time

including the time for codebook training as well as the com-

pression ratio have been made eligible for practical use.

ACKNOWLEDGEMENTS

This work is supported by Ministry of Education, Culture,

Sports, Science and Technology of Japan under the “Devel-

opment of fundamental software technologies for digital

archives” project.

REFERENCES
[1] J.F. Blinn, “Simulation of wrinkled surfaces, Proc. the 5th

annual conference on Computer graphics and interactive tech-

niques,” Vol. 12, No. 3, pp.286-292, 1978.

[2] J.D. Foley, A. Dam, S.K. Feiner, and J.F. Hughes, Computer

Graphics PRINCIPLES AND PRACTICE, 2nd Edition, Ad-

dison-Wesley Publishing Company, 1996.

[3] J.F. Blinn, “Texture and reflection in computer generated

images,” Comm. ACM, Vol. 19, No. 10, pp. 542-547, 1976.

[4] M.M. Oliveira, G. Bishop, D. McAllister, “Relief texture

mapping,” Proc. Siggraph2000, pp. 359-368, 2000.

[5] M. J. Kilgard, “A practical and robust bump-mapping tech-

nique for today’s GPUs,” Game Developers Conference, Ad-

vanced OpenGL Game Development, 2000.

[6] S. Green, “Bump Map Compression Whitepaper,”

http://download.nvidia.com/developer/Papers/2004/Bump_M

ap_Compression/Bump_Map_Compression.pdf, Oct. 2004.

[7] “ATI RADEON X800 3Dc white paper,”

www.ati.com/products/radeonx800/3DcWhitePaper.pdf.

[8] K. Hayase, T. Yamasaki, and K. Aizawa, “Compression of

bump map for graphic object and proposal of its evaluation

measure,” Technical Report of IEICE, IE2004-174, pp.1-6,

Sapporo, Feb. 2005 [In Japanese].

[9] R. Nakamura, T. Yamasaki, and K. Aizawa, “JPEG optimiza-

tion for efficient bump map compression,” Proc. of the 2005

IEICE General Conf., D-11-17, 2005 [In Japanese].

[10] T. Yamasaki, K. Hayase, and K. Aizawa, “Mathematical error

analysis of normal map compression based on unity condi-

tion,” Proc. ICIP2005, pp. II-253-II-257, 2005.

[11] M. J. Sabin and M. R. Gray, “Product code vector quantizers

for waveform and voice coding,” IEEE Trans. Acoust.,

Speech, Signal Processing, vol. ASSP-32, pp. 474–488, 1984.

[12] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector

quantizer design,” IEEE Trans. Communications, pp. 702-710,

1980.

[13] “Bump texture library,” Computer Graphics Systems Devel-

opment Corporation, http://cgsd.com/.

[14] E.J. Delp and O.R. Mitchell, “Image compression using block

truncation coding,” IEEE Trans. Communications, vol. com-

27, no. 9, 1979.

[15] T. Yamasaki, K. Hayase, and K. Aizawa, “Mathematical

PSNR prediction model between compressed normal maps

and rendered 3D images,” Proc. PCM 2005, Part II, LNCS

3768, pp. 584-594, 2005.

(a) (b) (c)

Fig. 5. Quality comparison of decoded normal maps of tile

texture compressed approximately at 4 bpp: (a) This work;

(b) optimized JPEG [10]; (c) 3Dc [7].

2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

8 16 32 64 128 256 512 1024
Codebook Size

P
ro

ce
ss

in
g

 T
im

e
(s

)

Encoding

Decoding

Fig. 6. Dependency of processing time on codebook size.

JPEG

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

JPEG2000 3Dc
Adaptive

3Dc
This Work

(1024)
This Work

(64)

P
ro

ce
ss

in
g
 T

im
e

(s
)

Compression Algorithm

0.120.10

0.81

0.42

0.68

0.02 0.02

1.40

0.57

0.26

0.050.05

Encoding

Decoding

Fig. 7. Comparison of averaged encoding/decoding time.

II 12

