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ABSTRACT 

Normal maps play an important role in realistic 3D image 

rendering to express pseudo roughness of the surface with 

small amount of polygon data. In this paper, a fast and effi-

cient normal map compression algorithm is proposed based 

on vector quantization and entropy coding. Using the strong 

correlation among x, y, and z components of normal maps 

owing to the unity condition, compression ratio has been 

made much better than conventional approaches. In addition, 

the encoding time has been made reasonable by considering 

the distribution of the data and employing inner product in 

nearest-neighbor search instead of Euclidian distance taking 

advantage of the unity condition of the training data.  

1. INTRODUCTION 

As more realism and visual complexity of scenes are re-

quired in 3D computer graphics, expressing 3D objects only 

by polygons has become problematic in terms of data stor-

age and computational cost. In this regard, a number of 

elaborated texture mapping techniques have been developed 

such as bump mapping [1], displacement mapping [2], re-

flection mapping [3], relief mapping [4], and so forth. Bump 

mapping, which is nowadays extended to normal mapping 

[5] to express more detailed and complex texture, is espe-

cially a key technology to enhance the roughness and wrin-

kles of the surface with small amount of polygon data.  

Although normal mapping was developed aiming at re-

ducing the amount of polygon data, using high resolution 

normal maps for every surface of the whole of 3D objects 

cause a lack of video memory resources and a storage prob-

lem again. In this regard, some of the general-purpose tex-

ture compression algorithms have been applied to normal 

map compression [6]. In addition, a dedicated normal map 

compression algorithm called 3Dc has been implemented 

onto high-end Graphics Processing Units (GPU's) [7]. We 

have also been developing adaptive 3Dc algorithm [8] and 

efficient normal map compression algorithms using standard 

2D image compression techniques such as JPEG and 

JPEG2000 [9][10]. 

However, such algorithms handle normal maps as 2D 

images and strong spatial correlation is assumed. Normal 

maps are usually more random and have less spatial correla-

tion than 2D natural images, resulting in poor compression 

performance. For efficient compression, new data structure 

optimized for normal map data distribution and a dedicated 

compression algorithm is required. 

The purpose of this paper is to develop a fast and effi-

cient normal map compression algorithm using vector quan-

tization (VQ) and Huffman encoding based on the strong 

correlation among x, y, and z components of normal maps 

owing to the unity condition. In this paper, each normal vec-

tor component (x, y, z) is handled as a training vector. Al-

though the vector dimension is quite small, much better 

compression rate has been achieved. In addition, the encod-

ing time has been made reasonable by considering the distri-

bution of the data and employing inner product in nearest-

neighbor search instead of Euclidian distance taking the 

unity condition of the training data into account. 

2. NORMAL MAPS 

Normal maps are the maps of three-dimensional vectors 

which represent directions of normal vectors of 3D object 

surfaces. Therefore, normal maps can be simply expressed 

as RGB bitmaps, in which the [-1, 1] range of normal vec-

tors is mapped to [0, 255] based on the equation as de-

scribed in the following (therefore, xyz values are discrete): 

( ) ( )2
, , , , 1

255
= ⋅ −x y z R G B    (1) 

where (x, y, z) and (R, G, B) represent element values of 

each pixel in a normal map and their corresponding full 

color pixel values, respectively. Examples of normal maps 

are shown in Fig. 1. 

           (a)          (b) 

Fig. 1. Examples of normal maps: (a) wall texture; (b) tile 

texture. The size is 512x512. 
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In addition, the length of normal vectors is fixed at one 

in order to simplify the weight factor calculation of color 

and luminance into inner product operation between the 

normal vector and the luminance vector: 
2 2 2
      1x y z+ + =     (2) 

Here, z component is always equal to or greater than zero 

because normal vectors are in the direction of outer side of 

the surface: 

1 1, 1 1, 0 1x y z− ≤ ≤ + − ≤ ≤ + ≤ ≤ +   (3) 

3. NORMAL MAP COMPRESSION 

3.1. Vector Quantization Based on Data Distribution 

In this paper, strong correlation among x, y, and z compo-

nents are utilized. As described in Section 2, the length of 

normal vectors is normalized to one and therefore normal 

vectors are distributed on a unit sphere. In addition, z com-

ponents are usually close to one. Therefore, distribution of 

normal vectors is quite limited and efficient compression 

will be achieved by VQ. The code indices are encoded by 

Huffman encoding for further compression. The codebook is 

designed for each normal map for better compression per-

formance. Therefore, efficient training algorithm has been 

developed as described below for fast compression. 

3.2. Training Efficiency Enhancement 

Codebook training is computationally expensive in VQ algo-

rithm. Therefore, the training efficiency is enhanced by the 

following techniques. 

Distribution of normal vectors is quite limited and thus 

signal space of normal maps is very small. In addition, the 

dimension of the training vectors is only three. Therefore, a 

lot of identical vectors exist in training vectors. In Fig. 2, 

histograms of normal vector distribution are demonstrated. 

Frequency was normalized by the number of training vectors. 

In addition, z components are omitted since it can be re-

stored using Eqs. (2) and (3). It is demonstrated that the 

number of unique vectors are small. For instance, the num-

bers of unique training vectors are 5776 and 15738 for Figs. 

1(a) and 1(b), respectively, which is much smaller than the 

total number of training vectors: 262144 (512x512). There-

fore, in our algorithm, unique vectors are firstly extracted 

and the number (i.e., frequency) of each unique vector is 

counted. The frequency table is utilized as weight factors for 

distortion calculation in the training phase. The detailed al-

gorithms are shown as pseudo codes in Tables 1 and 2. It is 

shown that the number of for loops is drastically reduced 

and fast codebook generation is possible. 

Due to the unity condition, nearest-neighbor code vector 

search for each training vector is equivalent to searching for 

such a code vector that maximizes the inner product with the 

training vector. This corresponds to the special case of gain-

shape VQ [11]. The computational cost of inner production 

is smaller than that of Euclidean distance, thus enabling fur-

ther speeding-up in training. 
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Fig. 2. Histograms of (x, y, z) vectors in normal maps: (a) 

wall texture; (b) tile texture. 

Table 1. Conventional training algorithm for VQ. 
generate a training vector set from a M*N normal map 

generate a seed code vector 

while(codebook size <= desired size}){

split the code vectors 

  while(distortion is not minimum){

    for(i=0;i<M*N;i++){ 

     search for the nearest-neighbor (NN) code vector 

     dist.=dist. + dist.(i-th training vector, NN code vector) 

    } 

    re-generate codebook 

  } 

}

Table 2. Proposed algorithm to decrease training time. 
generate a training vector set from a M*N normal map 

extract unique training vecs and generate the histograms of them 

generate a seed code vector 

while(codebook size <= desired}){

split the code vectors 

  while(distortion is not minimum){

    for(i=0;i<# of unique training vectors;i++){ 

      search for the nearest-neighbor (NN) code vector 

      dist.=dist. + (freq. of the training vector) *dist.(i-th training 

vector, NN code vector) 

    } 

    re-generate codebook 

  } 

}
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3.3. Code Vector Update 

Code vector updating is usually conducted by taking the 

average of all the training vectors in the same cluster. In 

normal map compression, the unity condition described in 

Eq. (2) needs to be considered: 

( )
, ,

2 2 2

max

1

m m m

i m i m i m
x y z

i S

m m m

H x x y y z z

subject to x y z

∈

= ⋅ + ⋅ + ⋅

+ + =
  (4) 

where S, (xi, yi, zi), and (xm, ym, zm) represent a set of vectors 

in a cluster, training vectors in a set S, and a code vector, 

respectively. By introducing Lagrangian method of unde-

termined multipliers, the code vector can be calculated as 

( )
( ) ( ) ( )

( )
2 2 2

1
, , , ,

m m m i i i

i i i

x y z x y z

x y z

= ⋅
+ +

This operation is equivalent to summing all the training vec-

tors in a set S and normalizing the vector length to one. 

4. EXPERIMENTAL RESULTS 

In the experiments, a custom-made personal computer with 

Pentium 4 (3.2GHz) and 2GB memory was utilized. All the 

algorithms were implemented with Microsoft Visual C++ 

ver. 7.0 with Ox and G7 options. In our VQ-based compres-

sion, LBG algorithm [12] was utilized with modifications in 

code vector training as explained in Section 3. The experi-

ments were carried out using about 300 normal maps with 

the size of 512x512, which were randomly selected from 

“Bump Texture Library [13].” 

Fig. 3 shows the average power of DCT coefficients of 

all the 8x8 sub-blocks using a standard 2D image (Lenna) 

and two kinds of normal maps. Luminance (Y) and x compo-

nents were analyzed for Lenna and the normal maps, respec-

tively. It is observed that more than ten times of power is 

contained in high-frequency region in normal maps, showing 

that conventional 2D image compression algorithms are not 

eligible for normal map compression. 

Compression performance of our proposed algorithm 

and conventional approaches is demonstrated in Fig. 4. In 

the original 3Dc algorithm [7], scalar quantization based on 

block truncation coding algorithm [14] is employed for 4x4 

blocks and the quantization level is fixed at eight (three bits). 

However, in the experiment, the quantization level was var-

ied from two levels (one bit) to 16 levels (four bits) for com-

parison. In our proposed algorithm, codebook size and 

Huffman table are also included in the bit rate calculation. 

The quality of the compressed normal maps were evaluated 

by averaging mean square errors (MSE’s) of x, y, z compo-

nents and calculating peak signal noise ratio (PSNR). 

Strictly speaking, normal maps are not “images.” Therefore, 

the quality of compressed normal maps needs to be analyzed 

by rendering 3D images using them. However, it has been 

demonstrated that the PSNR’s of the compressed normal 

maps and those of the rendered images using them are al-

most the same [15]. As can be seen in Fig. 4, our algorithm 

is much better than the others in terms of compression ratio. 

Our proposed algorithm yielded better compression ratio to 

more than 80% of the normal maps in the quality of 35dB 

and higher. Although it can be observed that the proposed 

VQ-scheme is outperformed by JPEG and JPEG 2000 in the 

very low bit-rate range, such low-bit normal maps below 

35dB would result in significant noise and artifacts in the 

rendered images. Therefore, the proposed algorithm is eligi-

ble for practical usage. 

The normal maps compressed at 4 bpp using various al-

gorithms are shown in Fig. 5. It is observed that our algo-

rithm gives much better visual quality than the 3Dc [7]. 

In Fig. 6, the average encoding/decoding time of the 

300 normal maps is demonstrated. The encoding time for 64 

codebook size was 4.8s for conventional VQ, 0.33s after 

introducing unique vector extraction, and 0.32s after intro-

ducing inner-product-based nearest neighbor search. For 

1024 codebook size, the processing time was 52.6s, 1.19s, 

and 0.57s, respectively. It has been demonstrated that the 

larger the codebook size becomes and the more nearest 

neighbor search is required, the faster the proposed algo-
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Fig. 4. PSNR’s of compressed normal maps: (a) wall tex-

ture; (b) tile texture. 
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rithm performs. Decoding time was about 0.05s and almost 

constant for any codebook size. 

Fig. 7 shows the encoding/decoding time comparison. 

Since the codebook needs be designed for each normal map, 

the training time is also contained in our method. The encod-

ing time has been made reasonable and practicable as com-

pared to the other algorithms. In addition, VQ-based algo-

rithm is known to be very fast in decoding. This is an impor-

tant advantage because decoding is conducted at the user 

side and executed much more times than encoding. 

5. CONCLUSIONS 

In this paper, an efficient compression technique for normal 

maps has been developed using vector quantization and 

Huffman encoding. While conventional normal map com-

pression algorithms regarded normal maps as 2D images and 

to tried to compress them by reducing the two-dimensional 

spatial correlation, our approach is based on the strong cor-

relation among (x, y, z) components of normal maps. Since 

most of normal map data are random and have little spatial 

correlation, our approach yielded much better compression 

performance than the conventional approaches. In addition, 

a fast codebook training algorithm for vector quantization 

has been developed by considering the distribution of the 

data and employing inner product in nearest-neighbor search 

instead of Euclidian distance taking advantage of the unity 

condition of the training data. As a result, the encoding time 

including the time for codebook training as well as the com-

pression ratio have been made eligible for practical use. 
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Fig. 5. Quality comparison of decoded normal maps of tile 

texture compressed approximately at 4 bpp: (a) This work; 

(b) optimized JPEG [10]; (c) 3Dc [7]. 
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